Skip to main content
Log in

Zero-divisor graphs for semigroups of order 7

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

In this paper, we extend the results of DeMeyer and DeMeyer (J Algebra 283:190–198, 2005) that determine a set of sufficient conditions for a given graph to be the zero-divisor graph of a commutative semigroup, and use these to construct a larger set of graphs of this type. We then use these results to classify the connected graphs on six vertices, determining whether or not each is the zero-divisor graph of a commutative semigroup of order seven. To accomplish this, we give specific examples of graphs that can be easily classified using the extensions. For those graphs to which neither the original results nor the extensions apply, we provide a method by which we can classify them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J Algebra 217, 434–447 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clifford, A., Preston, G.: The algebraic theory of semigroups. Math. Surv. AMS Vol 1 (1961)

  3. Diestel, R.: Graph Theory. Springer-Verlag Inc, New York (2000)

    Google Scholar 

  4. DeMeyer, F.R., DeMeyer, L.: Zero-divisor graphs of semigroups. J. Algebra 283, 190–198 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. DeMeyer, F.R., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semigroup. Semigroup Forum 65(2), 206–214 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Godsil, C.D., Royle, G.: Algebraic Graph Theory. Springer-Verlag Inc, New York (2001)

    Book  MATH  Google Scholar 

  7. Howie, J.M.: An Introduction to Semigroup Theory. Academic Press Inc, London (1976)

    MATH  Google Scholar 

  8. Leck, V.: Number of Nonisomorphic Drawings of the Connected Graphs with 6 Vertices :Universität Rostock, Germany. Retrieved from CiteSeerX: (1998). http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4F986295311A9EC94741679608A26781?doi=10.1.1.41.1012&rep=rep1&type=pdf. Accessed June 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnothon Sauer.

Additional information

Communicated by Jean-Eric Pin.

Appendix

Appendix

The following are the Cayley tables corresponding to the graphs listed in Table 1. Beginning with the vertex in the lower left corner of each graph and proceeding counter-clockwise, the vertices are labeled \(a-b-c-z-y-x\).

Table 1 24 Graphs of commutative semigroups
$$\begin{aligned} \begin{array}{ccc} \begin{array}{l|llllll} (1,1)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} a \\ b&{} a&{} b&{} b&{} 0&{} 0&{} a \\ c&{} a&{} b&{} c&{} x&{} 0&{} a \\ x&{} 0&{} 0&{} x&{} x&{} 0&{} 0 \\ y&{} 0&{} 0&{} 0&{} 0&{} y&{} y \\ z&{} a&{} a&{} a&{} 0&{} y&{} z \end{array}&{}\quad \begin{array}{l|llllll} (1,2)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} b&{} 0&{} 0&{} a \\ c&{} a&{} b&{} b&{} 0&{} x&{} a \\ x&{} 0&{} 0&{} 0&{} 0&{} x&{} 0 \\ y&{} 0&{} 0&{} x&{} x&{} y&{} x \\ z&{} 0&{} a&{} a&{} 0&{} x&{} 0 \\ \end{array} &{}\quad \begin{array}{l|llllll} (1,3)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} b&{} 0&{} z&{} z \\ c&{} a&{} b&{} c&{} 0&{} z&{} z \\ x&{} 0&{} 0&{} 0&{} x&{} x&{} 0 \\ y&{} 0&{} z&{} z&{} x&{} x&{} 0 \\ z&{} 0&{} z&{} z&{} 0&{} 0&{} 0 \\ \end{array}\\ \begin{array}{l|llllll} (1,4)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} b&{} 0&{} 0&{} a \\ c&{} a&{} b&{} c&{} 0&{} 0&{} a \\ x&{} 0&{} 0&{} 0&{} 0&{} x&{} 0 \\ y&{} 0&{} 0&{} 0&{} x&{} y&{} x \\ z&{} 0&{} a&{} a&{} 0&{} x&{} 0 \end{array}&{}\quad \begin{array}{l|llllll} (1,5)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} a&{} a&{} 0&{} 0&{} x \\ c&{} a&{} a&{} a&{} 0&{} 0&{} x \\ x&{} 0&{} 0&{} 0&{} 0&{} 0&{} x \\ y&{} 0&{} 0&{} 0&{} 0&{} 0&{} x \\ z&{} 0&{} x&{} x&{} x&{} x&{} z \end{array}&{}\quad \begin{array}{l|llllll} (1,6)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} b&{} 0&{} 0&{} a \\ c&{} a&{} b&{} c&{} x&{} 0&{} a \\ x&{} 0&{} 0&{} x&{} x&{} 0&{} 0 \\ y&{} 0&{} 0&{} 0&{} 0&{} y&{} y \\ z&{} 0&{} a&{} a&{} 0&{} y&{} y \end{array} \\ \begin{array}{l|llllll} (2,1)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} z&{} z&{} 0&{} 0&{} 0 \\ b&{} z&{} b&{} b&{} 0&{} 0&{}z \\ c&{} z&{} b&{} b&{} 0&{} x&{} z \\ x&{} 0&{} 0&{} 0&{} 0&{} x&{} 0 \\ y&{} 0&{} 0&{} x&{} x&{} y&{}0 \\ z&{} 0&{} z&{} z&{} 0&{} 0&{} 0 \end{array}&{}\quad \begin{array}{l|llllll} (2,2)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} b&{} 0&{} 0&{} z \\ c&{} a&{} b&{} b&{} 0&{} 0&{} z \\ x&{} 0&{} 0&{} 0&{} x&{} x&{} 0 \\ y&{} 0&{} 0&{} 0&{} x&{} x&{} 0 \\ z&{} 0&{} z&{} z&{} 0&{} 0&{} 0 \\ \end{array}&{}\quad \begin{array}{l|llllll} (2,3)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} 0&{} 0&{} 0&{} a&{} a \\ b&{} 0&{} b&{} b&{} 0&{} 0&{} 0 \\ c&{} 0&{} b&{} c&{} x&{} x&{} 0 \\ x&{} 0&{} 0&{} x&{} x&{} x&{} 0 \\ y&{} a&{} 0&{} x&{} x&{} y&{} a \\ z&{} a&{} 0&{} 0&{} 0&{} a&{} a \end{array}\\ \begin{array}{l|llllll} (2,4)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ c&{} a&{} a&{} a&{} 0&{} 0&{} x \\ x&{} 0&{} 0&{} 0&{} 0&{} 0&{} x \\ y&{} 0&{} 0&{} 0&{} 0&{} 0&{} x \\ z&{} 0&{} 0&{} x&{} x&{} x&{} z \end{array}&{}\quad \begin{array}{l|llllll} (2,5)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} a&{} 0&{} 0&{} 0 \\ c&{} a&{} a&{} c&{} 0&{} z&{} z \\ x&{} 0&{} 0&{} 0&{} x&{} x&{} 0 \\ y&{} 0&{} 0&{} z&{} x&{} x&{} 0 \\ z&{} 0&{} 0&{} z&{} 0&{} 0&{} 0 \\ \end{array}&{}\quad \begin{array}{l|llllll} (2,6)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} a&{} x&{} 0&{} 0 \\ c&{} a&{} a&{} c&{} 0&{} y&{} z \\ x&{} 0&{} x&{} 0&{} x&{} 0&{} 0 \\ y&{} 0&{} 0&{} y&{} 0&{} y&{} 0 \\ z&{} 0&{} 0&{} z&{} 0&{} 0&{} z \end{array} \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{lll} \begin{array}{l|llllll} (3,1)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} a&{} a&{} 0&{} x&{} 0 \\ c&{} a&{} a&{} c&{} 0&{} 0&{} z \\ x&{} 0&{} 0&{} 0&{} 0&{} x&{} 0 \\ y&{} 0&{} x&{} 0&{} x&{} y&{} 0 \\ z&{} 0&{} 0&{} z&{} 0&{} 0&{} z \end{array}&{}\quad \begin{array}{l|llllll} (3,2)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ c&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ x&{} 0&{} 0&{} 0&{} 0&{} x&{} 0 \\ y&{} 0&{} 0&{} 0&{} x&{} y&{} z \\ z&{} 0&{} 0&{} 0&{} 0&{} z&{} z \\ \end{array}&{}\quad \begin{array}{l|llllll} (3,3)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ c&{} a&{} a&{} c&{} x&{} 0&{} 0 \\ x&{} 0&{} 0&{} x&{} x&{} 0&{} 0 \\ y&{} 0&{} 0&{} 0&{} 0&{} y&{} y \\ z&{} 0&{} 0&{} 0&{} 0&{} y&{} y \end{array}\\ \begin{array}{l|llllll} (3,4)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} x&{} 0&{} 0&{} 0&{} y \\ b&{} x&{} b&{} x&{} x&{} 0&{} 0 \\ c&{} 0&{} x&{} 0&{} 0&{} 0&{} y \\ x&{} 0&{} x&{} 0&{} 0&{} 0&{} 0 \\ y&{} 0&{} 0&{} 0&{} 0&{} 0&{} y \\ z&{} y&{} 0&{} y&{} 0&{} y&{} z \end{array}&{}\quad \begin{array}{l|llllll} (3,5)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} 0&{} 0&{} 0&{} 0 \\ b&{} a&{} a&{} x&{} 0&{} 0&{} 0 \\ c&{} 0&{} x&{} c&{} x&{} 0&{} x \\ x&{} 0&{} 0&{} x&{} 0&{} 0&{} 0 \\ y&{} 0&{} 0&{} 0&{} 0&{} y&{} y \\ z&{} 0&{} 0&{} x&{} 0&{} y&{} y \end{array}&{}\quad \begin{array}{l|llllll} (3,6)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} 0&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} a&{} 0&{} 0&{} a \\ c&{} 0&{} a&{} 0&{} 0&{} 0&{} 0 \\ x&{} 0&{} 0&{} 0&{} 0&{} x&{} 0 \\ y&{} 0&{} 0&{} 0&{} x&{} y&{} x \\ z&{} 0&{} a&{} 0&{} 0&{} x&{} 0 \end{array}\\ \begin{array}{l|llllll} (4,1)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} 0&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} a&{} 0&{} a&{} a \\ c&{} 0&{} a&{} 0&{} 0&{} 0&{} 0 \\ x&{} 0&{} 0&{} 0&{} x&{} x&{} 0 \\ y&{} 0&{} a&{} 0&{} x&{} x&{} 0 \\ z&{} 0&{} a&{} 0&{} 0&{} 0&{} z \end{array}&{}\quad \begin{array}{l|llllll} (4,2)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} 0&{} 0&{} 0&{}0 \\ b&{} a&{} b&{} 0&{} 0&{} 0&{} 0 \\ c&{} 0&{} 0&{} 0&{} 0&{} 0&{} c \\ x&{} 0&{} 0&{} 0&{} x&{} x&{} 0 \\ y&{} 0&{} 0&{} 0&{} x&{} x&{} c \\ z&{} 0&{} 0&{} c&{} 0&{} c&{} z \end{array}&{}\quad \begin{array}{l|llllll} (4,3)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} 0&{} 0&{} 0&{}0 \\ b&{} a&{} b&{} 0&{} 0&{} 0&{} 0 \\ c&{} 0&{} 0&{} c&{} 0&{} 0&{} c \\ x&{} 0&{} 0&{} 0&{} x&{} 0&{} x \\ y&{} 0&{} 0&{} 0&{} 0&{} y&{} y \\ z&{} 0&{} 0&{} c&{} x&{} y&{} z \end{array}\\ \begin{array}{l|llllll} (4,4)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} 0&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} 0&{} x&{} 0&{} 0 \\ c&{} 0&{} 0&{} c&{} 0&{} 0&{} c \\ x&{} 0&{} x&{} 0&{} x&{} 0&{} 0 \\ y&{} 0&{} 0&{} 0&{} 0&{} y&{} y \\ z&{} 0&{} 0&{} c&{} 0&{} y&{} z \end{array}&{}\quad \begin{array}{l|llllll} (4,5)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} 0&{} a&{} 0&{} 0&{} 0&{} 0 \\ b&{} a&{} b&{} 0&{} 0&{} 0&{} 0 \\ c&{} 0&{} 0&{} 0&{} 0&{} 0&{} c \\ x&{} 0&{} 0&{} 0&{} 0&{} x&{} 0 \\ y&{} 0&{} 0&{} 0&{} x&{} y&{} 0 \\ z&{} 0&{} 0&{} c&{} 0&{} 0&{} z \end{array}&{}\quad \begin{array}{l|llllll} (4,6)&{} a&{} b&{} c&{} x&{} y&{} z \\ \hline a&{} a&{} a&{} a&{} 0&{} 0&{} 0 \\ b&{} a&{} a&{} a&{} 0&{} 0&{} x \\ c&{} a&{} a&{} b&{} 0&{} x&{} y \\ x&{} 0&{} 0&{} 0&{} 0&{} 0&{} x \\ y&{} 0&{} 0&{} x&{} 0&{} x&{} y \\ z&{} 0&{} x&{} y&{} x&{} y&{} z \\ \end{array} \end{array} \end{aligned}$$
Table 2 Two graphs that are not the graph of a commutative semigroup

Finally, neither of the graphs in Table 2 is the graph of a commutative semigroup:

  • For graph N1, using the same labeling mentioned at the beginning of the appendix, \(b^{2}=b, z^{2}=z, ab\in \{a,~c\}\), and \(bc\in \{a,c\}\), but then bz does not have a value.

  • A complete treatment of graph N2 was given above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauer, J., Smith, T.L. Zero-divisor graphs for semigroups of order 7. Semigroup Forum 90, 155–173 (2015). https://doi.org/10.1007/s00233-014-9605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-014-9605-0

Keywords

Navigation