Skip to main content

Advertisement

Log in

Comparative Proteomics Analysis of Four Commonly Used Methods for Identification of Novel Plasma Membrane Proteins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Plasma membrane proteins perform a variety of important tasks in the cells. These tasks can be diverse as carrying nutrients across the plasma membrane, receiving chemical signals from outside the cell, translating them into intracellular action, and anchoring the cell in a particular location. When these crucial roles of plasma membrane proteins are considered, the need for their characterization becomes inevitable. Certain characteristics of plasma membrane proteins such as hydrophobicity, low solubility, and low abundance limit their detection by proteomic analyses. Here, we presented a comparative proteomics study in which the most commonly used plasma membrane protein enrichment methods were evaluated. The methods that were utilized include biotinylation, selective CyDye labeling, temperature-dependent phase partition, and density-gradient ultracentrifugation. Western blot analysis was performed to assess the level of plasma membrane protein enrichment using plasma membrane and cytoplasmic protein markers. Quantitative evaluation of the level of enrichment was performed by two-dimensional electrophoresis (2-DE) and benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate polyacrylamide gel electrophoresis (16-BAC/SDS-PAGE) from which the protein spots were cut and identified. Results from this study demonstrated that density-gradient ultracentrifugation method was superior when coupled with 16-BAC/SDS-PAGE. This work presents a valuable contribution and provides a future direction to the membrane sub-proteome research by evaluating commonly used methods for plasma membrane protein enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PM:

Plasma membrane

MPs:

Membrane proteins

PMPs:

Plasma membrane proteins

PMAPs:

Plasma membrane-associated proteins

PBS:

Phosphate-buffered saline

TBS:

Tris-buffered saline

HB:

Homogenization buffer

CHO:

Chinese Hamster Ovary

MS:

Mass spectrometry

IEF:

Isoelectric focusing

2-DE:

Two-dimensional electrophoresis

16-BAC/SDS-PAGE:

Benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate polyacrylamide gel electrophoresis

LC–MS/MS:

Liquid chromatography-mass spectrometry

References

  • Arnold T, Linke D (2007) Phase separation in the isolation and purification of membrane proteins. Biotechniques 43(427–30):432 (434 passim)

    Google Scholar 

  • Baharvand H, Fathi A, van Hoof D, Salekdeh GH (2007) Concise review: trends in stem cell proteomics. Stem Cells 25:1888–1903

    Article  CAS  PubMed  Google Scholar 

  • Blonder J, Conrads TP, Yu LR, Terunuma A, Janini GM, Issaq HJ, Vogel JC, Veenstra TD (2004) A detergent- and cyanogen bromide-free method for integral membrane proteomics: application to halobacterium purple membranes and the human epidermal membrane proteome. Proteomics 4:31–45

    Article  CAS  PubMed  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Busch G, Hoder D, Reutter W, Tauber R (1989) Selective isolation of individual cell surface proteins from tissue culture cells by a cleavable biotin label. Eur J Cell Biol 50:257–262

    CAS  PubMed  Google Scholar 

  • Chevalier F (2010) Highlights on the capacities of “gel-based” proteomics. Proteome Sci 8:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cordwell SJ, Thingholm TE (2010) Technologies for plasma membrane proteomics. Proteomics 10:611–627

    Article  CAS  PubMed  Google Scholar 

  • deBlaquiere J, Burgess AW (1999) Affinity purification of plasma membranes. J Biomol Tech 10:64–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donoghue PM, Hughes C, Vissers JP, Langridge JI, Dunn MJ (2008) Nonionic detergent phase extraction for the proteomic analysis of heart membrane proteins using label-free LC-MS. Proteomics 8:3895–3905

    Article  CAS  PubMed  Google Scholar 

  • Ellerbroek SM, Wu YI, Overall CM, Stack MS (2001) Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem 276:24833–24842

    Article  CAS  PubMed  Google Scholar 

  • Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M (2005) Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 23:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Giansanti P, Tsiatsiani L, Low TY, Heck AJ (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11:993–1006

    Article  CAS  PubMed  Google Scholar 

  • Gilmore JM, Washburn MP (2010) Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteom 73:2078–2091

    Article  CAS  Google Scholar 

  • Gu B, Zhang J, Wu Y, Zhang X, Tan Z, Lin Y, Huang X, Chen L, Yao K, Zhang M (2011) Proteomic analyses reveal common promiscuous patterns of cell surface proteins on human embryonic stem cells and sperms. PLoS ONE 6:e19386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagner-McWhirter A, Winkvist M, Bourin S, Marouga R (2008) Selective labelling of cell-surface proteins using CyDye DIGE fluor minimal dyes. J Vis Exp 21:e945

    Google Scholar 

  • Hartinger J, Stenius K, Hogemann D, Jahn R (1996) 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem 240:126–133

    Article  CAS  PubMed  Google Scholar 

  • Helbig AO, Heck AJ, Slijper M (2010) Exploring the membrane proteome–challenges and analytical strategies. J Proteom 73:868–878

    Article  CAS  Google Scholar 

  • Hongsachart P, Sinchaikul S, Phutrakul S, Wongkham W, Chen S (2008) Comparative membrane extraction methods for identifying membrane proteome of SW900 squamous lung cancer cell line. Chiang Mai J Sci 35:467–482

    CAS  Google Scholar 

  • Islinger M, Weber G (2008) Free flow isoelectric focusing: a method for the separation of both hydrophilic and hydrophobic proteins of rat liver peroxisomes. Methods Mol Biol 432:199–215

    Article  CAS  PubMed  Google Scholar 

  • Jang JH, Hanash S (2003) Profiling of the cell surface proteome. Proteomics 3:1947–1954

    Article  CAS  PubMed  Google Scholar 

  • Josic D, Clifton JG (2007) Mammalian plasma membrane proteomics. Proteomics 7:3010–3029

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen L, Sengelov H, Borregaard N (1999) Subcellular fractionation of human neutrophils on Percoll density gradients. J Immunol Methods 232:131–143

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Kim Y, Kim SS, Lee JH, Cho K, Lee SS, Lee ZW, Kwon KH, Kim YH, Suh-Kim H, Yoo JS, Park YM (2009) Differential expression of cell surface proteins in human bone marrow mesenchymal stem cells cultured with or without basic fibroblast growth factor containing medium. Proteomics 9:4389–4405

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Harraz MM, Zhou W, Zhang LN, Ding W, Zhang Y, Eggleston T, Yeaman C, Banfi B, Engelhardt JF (2006) Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol Cell Biol 26:140–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteom 1:401–409

    Article  CAS  Google Scholar 

  • Luche S, Santoni V, Rabilloud T (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3:249–253

    Article  CAS  PubMed  Google Scholar 

  • Lund R, Leth-Larsen R, Jensen ON, Ditzel HJ (2009) Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J Proteome Res 8:3078–3090

    Article  CAS  PubMed  Google Scholar 

  • Mathias RA, Chen YS, Kapp EA, Greening DW, Mathivanan S, Simpson RJ (2011) Triton X-114 phase separation in the isolation and purification of mouse liver microsomal membrane proteins. Methods 54:396–406

    Article  CAS  PubMed  Google Scholar 

  • Morre DJ, Morre DM (1989) Preparation of mammalian plasma membranes by aqueous two-phase partition. Biotechniques 7:946–948 (950–954, 956–958)

    CAS  PubMed  Google Scholar 

  • Nunomura K, Nagano K, Itagaki C, Taoka M, Okamura N, Yamauchi Y, Sugano S, Takahashi N, Izumi T, Isobe T (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteom 4:1968–1976

    Article  CAS  Google Scholar 

  • Orsburn BC, Stockwin LH, Newton DL (2011) Challenges in plasma membrane phosphoproteomics. Expert Rev Proteom 8:483–494

    Article  CAS  Google Scholar 

  • Ozgul S, Kasap M, Akpinar G, Kanli A, Guzel N, Karaosmanoglu K, Baykal AT, Iseri P (2015) Linking a compound-heterozygous Parkin mutant (Q311R and A371T) to Parkinson’s disease by using proteomic and molecular approaches. Neurochem Int 85–86:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ozlu N, Monigatti F, Renard BY, Field CM, Steen H, Mitchison TJ, Steen JJ (2010) Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Mol Cell Proteom 9:336–350

    Article  CAS  Google Scholar 

  • Pionneau C, Canelle L, Bousquet J, Hardouin J, Bigeard J, Caron M (2005) Proteomic analysis of membrane-associated proteins from the breast cancer cell line MCF7. Cancer Genom Proteom 2:199–208

    CAS  Google Scholar 

  • Prive GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  CAS  PubMed  Google Scholar 

  • Qoronfleh MW, Benton B, Ignacio R, Kaboord B (2003) Selective enrichment of membrane proteins by partition phase separation for proteomic studies. J Biomed Biotechnol 2003:249–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30(Suppl 1):S174–S180

    Article  PubMed  Google Scholar 

  • Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteom 73:2064–2077

    Article  CAS  Google Scholar 

  • Rawlings AE (2016) Membrane proteins: always an insoluble problem? Biochem Soc Trans 44:790–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabarth N, Lamer S, Zimny-Arndt U, Jungblut PR, Meyer TF, Bumann D (2002) Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. J Biol Chem 277:27896–27902

    Article  CAS  PubMed  Google Scholar 

  • Santoni V, Rabilloud T, Doumas P, Rouquie D, Mansion M, Kieffer S, Garin J, Rossignol M (1999) Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels. Electrophoresis 20:705–711

    Article  CAS  PubMed  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070

    Article  CAS  PubMed  Google Scholar 

  • Scheurer SB, Rybak JN, Roesli C, Brunisholz RA, Potthast F, Schlapbach R, Neri D, Elia G (2005) Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5:2718–2728

    Article  CAS  PubMed  Google Scholar 

  • Schiffer E, Mischak H, Novak J (2006) High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics 6:5615–5627

    Article  CAS  PubMed  Google Scholar 

  • Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  CAS  PubMed  Google Scholar 

  • Sidibe A, Yin X, Tarelli E, Xiao Q, Zampetaki A, Xu Q, Mayr M (2007) Integrated membrane protein analysis of mature and embryonic stem cell-derived smooth muscle cells using a novel combination of CyDye/biotin labeling. Mol Cell Proteom 6:1788–1797

    Article  CAS  Google Scholar 

  • Simpson DC, Smith RD (2005) Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 26:1291–1305

    Article  CAS  PubMed  Google Scholar 

  • Smolders K, Lombaert N, Valkenborg D, Baggerman G, Arckens L (2015) An effective plasma membrane proteomics approach for small tissue samples. Sci Rep 5:10917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Tan HT, Chung MC (2008) Membrane proteins and membrane proteomics. Proteomics 8:3924–3932

    Article  CAS  PubMed  Google Scholar 

  • Tanford C, Reynolds JA (1976) Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta 457:133–170

    Article  CAS  PubMed  Google Scholar 

  • Tauber R, Reutter W (1978) Degradation of fucoproteins and sialoproteins in the plasma membrane of normal and regenerating liver. FEBS Lett 87:135–138

    Article  CAS  PubMed  Google Scholar 

  • Tsiatsiani L, Heck AJ (2015) Proteomics beyond trypsin. FEBS J 282:2612–2626

    Article  CAS  PubMed  Google Scholar 

  • Vit O, Petrak J (2016) Integral membrane proteins in proteomics. How to break open the black box? J Proteomics 153:8–20

    Article  PubMed  CAS  Google Scholar 

  • Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenge B, Bonisch H, Grabitzki J, Lochnit G, Schmitz B, Ahrend MH (2008) Separation of membrane proteins by two-dimensional electrophoresis using cationic rehydrated strips. Electrophoresis 29:1511–1517

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Lai CF, Mobley WC (2001) Nerve growth factor activates persistent Rap1 signaling in endosomes. J Neurosci 21:5406–5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CC, MacCoss MJ, Howell KE, Yates JR 3rd (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21:532–538

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhang W, Kho Y (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number of 113S868.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kasap.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneten, K.K., Kasap, M., Akpinar, G. et al. Comparative Proteomics Analysis of Four Commonly Used Methods for Identification of Novel Plasma Membrane Proteins. J Membrane Biol 252, 587–608 (2019). https://doi.org/10.1007/s00232-019-00084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00084-3

Keywords

Navigation