Skip to main content

Advertisement

Log in

Inhibition of Bacterial Toxin Activity by the Nuclear Stain, DRAQ5™

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The repeats-in-toxin family of toxins includes proteins produced by Gram negative bacteria such as Escherichia coli (α-hemolysin), Bordetella pertussis (adenylate cyclase toxin), and Aggregatibacter actinomycetemcomitans (LtxA), which contribute to the pathogenesis of these organisms by killing host cells. In the case of LtxA produced by A. actinomycetemcomitans, white blood cells are targeted, allowing the bacteria to avoid clearance by the host immune system. In its association with target cells, LtxA binds to a receptor, lymphocyte function-associated antigen-1, as well as membrane lipids and cholesterol, before being internalized via a lysosomal-mediated pathway. The motivation for this project comes from our discovery that DRAQ5™, a membrane-permeable nuclear stain, prevents the internalization of LtxA in a Jurkat T cell line. We hypothesized that DRAQ5™, in crossing the plasma membrane, alters the properties of the membrane to inhibit LtxA internalization. To investigate how DRAQ5™ interacts with the lipid membrane to prevent LtxA internalization, we used studied DRAQ5™-mediated membrane changes in model membranes using a variety of techniques, including differential scanning calorimetry and fluorescence spectroscopy. Our results suggest that DRAQ5™ inhibits the activity of LtxA by decreasing the fluidity of the cellular lipid membrane, which decreases LtxA binding. These results present an interesting possible anti-virulence strategy; by altering bacterial toxin activity by modifying membrane fluidity, it may be possible to inhibit the pathogenicity of A. actinomycetemcomitans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso A, Goni FM, Buckley JT (2000) Lipids favoring inverted phase enhance the ability of aerolysin to permeabilize liposome bilayers. Biochemistry 39:14019–14024

    Article  CAS  PubMed  Google Scholar 

  • Alves DS, Perez-Fons L, Estepa A, Micol V (2004) Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol 68:549–561

    Article  CAS  PubMed  Google Scholar 

  • Angelova MI, Soleau S, Meleard Ph, Faucon F, Bothorel P (1992) Preparation of giant vesicles by external ac electric fields. Kinetics and applications. In: Helm C, Losche M, Mohwald H (eds) Trends in colloid and interface science VI. Steinkopff, Darmstadt, pp 127–131

    Chapter  Google Scholar 

  • Atapattu DN, Czuprynski CJ (2007) Mannheimia haemolytica leukotoxin binds to lipid rafts in bovine lymphoblastoid cells and is internalized in a dynamin-2- and clathrin-dependent manner. Infect Immun 75:4719–4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balashova N, Dhingra A, Boesze-Battaglia K, Lally ET (2016) Aggregatibacter actinomycetemcomitans leukotoxin induces cytosol acidification in LFA-1 expressing immune cells. Mol Oral Microbiol 31(1):106–114

    Article  CAS  PubMed  Google Scholar 

  • Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW et al (2015) A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 7:306ra148

    Article  PubMed  Google Scholar 

  • Boesze-Battaglia K, Brown A, Walker L, Besack D, Zekavat A, Wrenn S et al (2009) Cytolethal distending toxin-induced cell cycle arrest of lymphocytes is dependent upon recognition and binding to cholesterol. J Biol Chem 284:10650–10658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Boesze-Battaglia K, Du Y, Stefano FP, Kieba IR, Epand RF et al (2012) Aggregatibacter actinomycetemcomitans leukotoxin cytotoxicity occurs through bilayer destabilization. Cell Microbiol 14:869–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Balashova NV, Epand RM, Epand RF, Bragin A, Kachlany SC et al (2013) Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J Biol Chem 288:23607–23621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Koufos E, Balashova NV, Boesze-Battaglia K, Lally ET (2016) Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Mol Oral Microbiol 31(1):94–105

    Article  CAS  PubMed  Google Scholar 

  • Bumba L, Masin J, Fiser R, Sebo P (2010) Bordetella adenylate cyclase toxin mobilizes its β2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog 6(5):e1000901. doi:10.1371/journal.ppat.1000901

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen HC, Hsieh WT, Chang WC, Chung JG (2004) Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food Chem Toxicol 42:1251–1257

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Yahiro K, Morinaga N, Miyazaki M, Noda M (2007) Inhibitory effects of various plant polyphenols on the toxicity of Staphylococcal α-toxin. Microb Pathog 42:215–224

    Article  CAS  PubMed  Google Scholar 

  • Dawaliby R, Trubbia C, Delporte C, Noyon C, Ruysschaert J-M, Van Antwerpen P, Govaerts C (2016) Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J Biol Chem 291:3658–3667

    Article  CAS  PubMed  Google Scholar 

  • DiFranco KM, Gupta A, Galusha LE, Perez J, Nguyen T-V, Fineza CD, Kachlany SC (2012) Leukotoxin (Leukothera(R)) targets active leukocyte function antigen-1 (LFA-1) protein and triggers a lysosomal mediated cell death pathway. J Biol Chem 287:17618–17627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escriba PV, Sastre M, Garcia-Sevilla JA (1995) Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures. Proc Natl Acad Sci 92:7595–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes DJ, Mayer M (2005) Electroformation of giant liposomes from spin-coated films of lipids. Colloids Surf B 42:115–123

    Article  CAS  Google Scholar 

  • Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci 107:4341–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fine DH, Furgang D, Schreiner HC, Goncharoff P, Charlesworth J, Ghazwan G et al (1999) Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth. Implications for virulence. Microbiology 145:1335–1347

    Article  CAS  PubMed  Google Scholar 

  • Fong KP, Pacheco CMF, Otis LL, Baranwal S, Kieba IR, Harrison G et al (2006) Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol 8:1753–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellin AC, Bentires-Alj M, Verlaet M, Benoit V, Gielen J, Bours V, Merville MP (2000) Roles of nuclear factor-κB, p53, and p21/WAF1 in daunomycin-induced cell cycle arrest and apoptosis. J Pharmacol Exp Ther 295:870–878

    CAS  PubMed  Google Scholar 

  • Hisano M, Yamaguchi K, Inoue Y, Ikeda Y, Iijima M, Adachi M, Shimamura T (2003) Inhibitory effect of catechin against the superantigen staphylococcal enterotoxin B (SEB). Arch Dermatol Res 295:183–189

    Article  CAS  PubMed  Google Scholar 

  • Jedrzejczak M, Koceva-Chyla A, Gwozdzinski K, Jozwiak Z (1999) Changes in plasma membrane fluidity of immortal rodent cells induced by anticancer drugs doxorubicin, aclarubicin and mitoxantrone. Cell Biol Int 23:497–506

    Article  CAS  PubMed  Google Scholar 

  • Kachlany SC, Fine DH, Figurski DH (2002) Purification of secreted leukotoxin (LtxA) from Actinobacillus actinomycetemcomitans. Protein Expr Purif 25:465–471

    Article  CAS  PubMed  Google Scholar 

  • Kaye S, Merry S (1985) Tumour cell resistance to anthracyclines—a review. Cancer Chemother Pharmacol 14:96–103

    Article  CAS  PubMed  Google Scholar 

  • Kieba IR, Fong KP, Tang HY, Hoffman KE, Speicher DW, Klickstein LB, Lally ET (2007) Aggregatibacter actinomycetemcomitans leukotoxin requires β-sheets 1 and 2 of the human CD11a β-propeller for cytotoxicity. Cell Microbiol 9:2689–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Carman CV, Springer TA (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Lee YS, Kim DK (2009) Doxorubicin exerts cytotoxic effects through cell cycle arrest and FAS-mediated cell death. Pharmacology 84:300–309

    Article  CAS  PubMed  Google Scholar 

  • Lai C-H, Lai C-K, Lin Y-J, Hung C-L, Chu C-H, Feng C-L et al (2013) Characterization of putative cholesterol recognition/interaction amino acid consensus-like motif of Campylobacter jejuni cytolethal distending toxin C. PLoS One 8:e66202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lally ET, Kieba IR, Sato A, Green CL, Rosenbloom J, Korostoff J et al (1997) RTX toxins recognize a β2 integrin on the surface of human target cells. J Biol Chem 272:30463–30469

    Article  CAS  PubMed  Google Scholar 

  • Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    CAS  PubMed  Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta (BBA) Biomembr 1061:297–303

    Article  CAS  Google Scholar 

  • Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  CAS  PubMed  Google Scholar 

  • Miller CM, Brown AC, Mittal J (2014) Disorder in cholesterol-binding functionality of CRAC peptides: a molecular dynamics study. J Phys Chem B 118:13169–13174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morinaga N, Yahiro K, Noda M (2010) Resveratrol, a natural polyphenolic compound, inhibits cholera toxin-induced cyclic AMP accumulation in Vero cells. Toxicon 56:29–35

    Article  CAS  PubMed  Google Scholar 

  • Olchowik-Grabarek E, Swiecicka I, Andreeva-Kovaleskaya Z, Solonin A, Bonarska-Kujawa D, Kleszczynska H et al (2014) Role of structural changes induced in biological membranes by hydrolysable tannins from sumac leaves (Rhus typhina L.) in their antihemolytic and antibacterial effects. J Membr Biol 247:533–540

    Article  CAS  PubMed  Google Scholar 

  • Pacilio C, Florio S, Pagnini U, Crispino A, Claudio PP, Pacilio G, Pagnini G (1998) Modification of membrane fluidity and depolarization by some anthracyclines in different cell lines. Anticancer Res 18:4027–4034

    CAS  PubMed  Google Scholar 

  • Patel HK, Willhite DC, Patel RM, Ye D, Williams CL, Torres EM et al (2002) Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infect Immun 70:4112–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paturel L, Casalta JP, Habib G, Nezri M, Raoult D (2004) Actinobacillus actinomycetemcomitans endocarditis. Clin Microbiol Infect 10:98–118

    Article  CAS  PubMed  Google Scholar 

  • Regev R, Eytan GD (1997) Flip-flop of doxorubicin across erythrocyte and lipid membranes. Biochem Pharmacol 54:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Regev R, Yeheskely-Hayon D, Katzir H, Eytan GD (2005) Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem Pharmacol 70:161–169

    Article  CAS  PubMed  Google Scholar 

  • Sanchez SA, Tricerri MA, Gunther G, Gratton E (2007) Laurdan generalized polarization: from cuvette to microscope. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy. Formatex, Spain

    Google Scholar 

  • Schwiering M, Brack A, Stork R, Hellman N (2013) Lipid and phase specificity of α-toxin from S. aureus. Biochim Biophys Acta 1828:1962–1972

    Article  CAS  PubMed  Google Scholar 

  • Smith PJ, Blunt N, Wiltshire M, Hoy T, Teesdale-Spittle P, Craven MR et al (2000) Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Cytometry 40:280–291

    Article  CAS  PubMed  Google Scholar 

  • Taichman NS, Dean RT, Sanderson CJ (1980) Biochemical and morphological characterization of the killing of human monocytes by a leukotoxin derived from Actinobacillus actinomycetemcomitans. Infect Immun 28:258–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taichman NS, Shenker BJ, Tsai CC, Glickman LT, Baehni PC, Stevens R, Hammond BF (1984) Cytopathic effects of Actinobacillus actinomycetemcomitans on monkey blood leukocytes. J Periodontal Res 19:133–145

    Article  CAS  PubMed  Google Scholar 

  • Taichman NS, Simpson DL, Sakurada S, Cranfield M, DiRienzo J, Slots J (1987) Comparative studies on the biology of Actinobacillus actinomycetemcomitans leukotoxin in primates. Oral Microbiol Immunol 2:97–104

    Article  CAS  PubMed  Google Scholar 

  • Tritton TR, Murphree SA, Sartorelli AC (1978) Adriamycin: a proposal on the specificity of drug action. Biochem Biophys Res Commun 84:802–808

    Article  CAS  PubMed  Google Scholar 

  • Verhelst R, Schroyen M, Buys N, Niewold TA (2013) E. coli heat labile toxin (LT) inactivation by specific polyphenols is aggregation dependent. Vet Microbiol 163:319–324

    Article  CAS  PubMed  Google Scholar 

  • Walters MJ, Brown AC, Edrington TC, Baranwal S, Du Y, Lally ET, Boesze-Battaglia K (2013) Membrane association and destabilization by Aggregatibacter actinomycetemcomitans leukotoxin requires changes in secondary structures. Mol Oral Microbiol 28:342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RA (1991) Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5:521–528

    Article  CAS  PubMed  Google Scholar 

  • Zambon JJ (1985) Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol 12:1–20

    Article  CAS  PubMed  Google Scholar 

  • Zitzer A, Bittman R, Verbicky CA, Erukulla RK, Bhakdi S, Weis S et al (2001) Coupling of cholesterol and cone-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxins Streptolysin O and Vibrio cholerae cytolysin. J Biol Chem 276:14628–14633

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health (R00DE022795, ACB). The authors wish to acknowledge the University of Pennsylvania, School of Dental Medicine live cell confocal imaging core for assistance in the confocal microscopy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela C. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, J.N., Koufos, E. & Brown, A.C. Inhibition of Bacterial Toxin Activity by the Nuclear Stain, DRAQ5™. J Membrane Biol 249, 503–511 (2016). https://doi.org/10.1007/s00232-016-9892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9892-3

Keywords

Navigation