Skip to main content

Advertisement

Log in

Caveolin-1 Sensitivity of Excitatory Amino Acid Transporters EAAT1, EAAT2, EAAT3, and EAAT4

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Excitatory amino acid transporters EAAT1 (SLC1A3), EAAT2 (SLC1A2), EAAT3 (SLC1A1), and EAAT4 (SLC1A6) serve to clear l-glutamate from the synaptic cleft and are thus important for the limitation of neuronal excitation. EAAT3 has previously been shown to form complexes with caveolin-1, a major component of caveolae, which participate in the regulation of transport proteins. The present study explored the impact of caveolin-1 on electrogenic transport by excitatory amino acid transporter isoforms EAAT1-4. To this end cRNA encoding EAAT1, EAAT2, EAAT3, or EAAT4 was injected into Xenopus oocytes without or with additional injection of cRNA encoding caveolin-1. The l-glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1-, EAAT2-, EAAT3-, or EAAT4-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of caveolin-1. Caveolin-1 decreased significantly the maximal transport rate. Treatment of EAATs-expressing oocytes with brefeldin A (5 µM) was followed by a decrease in conductance, which was similar in oocytes expressing EAAT together with caveolin-1 as in oocytes expressing EAAT1-4 alone. Thus, caveolin-1 apparently does not accelerate transporter protein retrieval from the cell membrane. In conclusion, caveolin-1 is a powerful negative regulator of the excitatory glutamate transporters EAAT1, EAAT2, EAAT3, and EAAT4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abousaab A, Warsi J, Elvira B, Alesutan I, Hoseinzadeh Z, Lang F (2015) Down-regulation of excitatory amino acid transporters EAAT1 and EAAT2 by the kinases SPAK and OSR1. J Membr Biol 248:1107–1119

    Article  CAS  PubMed  Google Scholar 

  • Ackerman MJ, Mohler PJ (2010) Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circ Res 107:457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed M, Elvira B, Almilaji A, Bock CT, Kandolf R, Lang F (2015a) Down-regulation of inwardly rectifying Kir2.1 K + channels by human parvovirus B19 capsid protein VP1. J Membr Biol 248:223–229

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Salker MS, Elvira B, Umbach AT, Fakhri H, Saeed AM, Shumilina E, Hosseinzadeh Z, Lang F (2015b) SPAK sensitive regulation of the epithelial Na channel ENaC. Kidney Blood Press Res 40:335–343

    CAS  PubMed  Google Scholar 

  • Alesutan I, Voelkl J, Stockigt F, Mia S, Feger M, Primessnig U, Sopjani M, Munoz C, Borst O, Gawaz M, Pieske B, Metzler B, Heinzel F, Schrickel JW, Lang F (2015) AMP-activated protein kinase alpha1 regulates cardiac gap junction protein connexin 43 and electrical remodeling following pressure overload. Cell Physiol Biochem 35:406–418

    Article  CAS  PubMed  Google Scholar 

  • Almilaji A, Munoz C, Pakladok T, Alesutan I, Feger M, Foller M, Lang UE, Shumilina E, Lang F (2013) Klotho sensitivity of the neuronal excitatory amino acid transporters EAAT3 and EAAT4. PLoS ONE 8:e70988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almilaji A, Honisch S, Liu G, Elvira B, Ajay SS, Hosseinzadeh Z, Ahmed M, Munoz C, Sopjani M, Lang F (2014a) Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein. Kidney Blood Press Res 39:609–622

    Article  CAS  PubMed  Google Scholar 

  • Almilaji A, Sopjani M, Elvira B, Borras J, Dermaku-Sopjani M, Munoz C, Warsi J, Lang UE, Lang F (2014b) Upregulation of the creatine transporter Slc6A8 by Klotho. Kidney Blood Press Res 39:516–525

    Article  CAS  PubMed  Google Scholar 

  • Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41:313–318

    Article  CAS  PubMed  Google Scholar 

  • Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest 121:446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett NL, Pow DV (2000) Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function. Invest Ophthalmol Vis Sci 41:585–591

    CAS  PubMed  Google Scholar 

  • Beart PM, O’Shea RD (2007) Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger UV, Hediger MA (1998) Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization. Anat Embryol (Berl) 198:13–30

    Article  CAS  Google Scholar 

  • Boycott HE, Dallas M, Boyle JP, Pearson HA, Peers C (2007) Hypoxia suppresses astrocyte glutamate transport independently of amyloid formation. Biochem Biophys Res Commun 364:100–104

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Breton S, Ausiello DA, Marshansky V (2009) Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 10:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidlow JH Jr, Sessa WC (2010) Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86:219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cholet N, Pellerin L, Magistretti PJ, Hamel E (2002) Similar perisynaptic glial localization for the Na + , K + -ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 12:515–525

    Article  CAS  PubMed  Google Scholar 

  • Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H, Iwata N, Ozaki N, Fukumaki Y (2007) Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 144B:271–278

    Article  CAS  PubMed  Google Scholar 

  • Derouiche A, Rauen T (1995) Coincidence of l-glutamate/l-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143

    Article  CAS  PubMed  Google Scholar 

  • Desilva TM, Billiards SS, Borenstein NS, Trachtenberg FL, Volpe JJ, Kinney HC, Rosenberg PA (2008) Glutamate transporter EAAT2 expression is up-regulated in reactive astrocytes in human periventricular leukomalacia. J Comp Neurol 508:238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domercq M, Matute C (1999) Expression of glutamate transporters in the adult bovine corpus callosum. Brain Res Mol Brain Res 67:296–302

    Article  CAS  PubMed  Google Scholar 

  • Domercq M, Sanchez-Gomez MV, Areso P, Matute C (1999) Expression of glutamate transporters in rat optic nerve oligodendrocytes. Eur J Neurosci 11:2226–2236

    Article  CAS  PubMed  Google Scholar 

  • Dowd LA, Coyle AJ, Rothstein JD, Pritchett DB, Robinson MB (1996) Comparison of Na + -dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1). Mol Pharmacol 49:465–473

    CAS  PubMed  Google Scholar 

  • Dzubay JA, Jahr CE (1999) The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci 19:5265–5274

    CAS  PubMed  Google Scholar 

  • Elvira B, Honisch S, Almilaji A, Pakladok T, Liu G, Shumilina E, Alesutan I, Yang W, Munoz C, Lang F (2013) Up-regulation of Na(+)-coupled glucose transporter SGLT1 by caveolin-1. Biochim Biophys Acta 1828:2394–2398

    Article  CAS  PubMed  Google Scholar 

  • Elvira B, Munoz C, Borras J, Chen H, Warsi J, Ajay SS, Shumilina E, Lang F (2014) SPAK and OSR1 dependent down-regulation of murine renal outer medullary K channel ROMK1. Kidney Blood Press Res 39:353–360

    Article  CAS  PubMed  Google Scholar 

  • Elvira B, Warsi J, Fezai M, Munoz C, Lang F (2015) SPAK and OSR1 sensitive cell membrane protein abundance and activity of KCNQ1/E1 K + channels. Cell Physiol Biochem 37:2032–2042

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Han D, Hong J, Tan Q, Tian Y (2012) The chemokine, macrophage inflammatory protein-2gamma, reduces the expression of glutamate transporter-1 on astrocytes and increases neuronal sensitivity to glutamate excitotoxicity. J Neuroinflammation 9:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fezai M, Elvira B, Borras J, Ben-Attia M, Hoseinzadeh Z, Lang F (2014) Negative regulation of the creatine transporter SLC6A8 by SPAK and OSR1. Kidney Blood Press Res 39:546–554

    Article  CAS  PubMed  Google Scholar 

  • Fezai M, Elvira B, Warsi J, Ben-Attia M, Hosseinzadeh Z, Lang F (2015) Up-regulation of intestinal phosphate transporter NaPi-IIb (SLC34A2) by the kinases SPAK and OSR1. Kidney Blood Press Res 40:555–564

    Article  CAS  PubMed  Google Scholar 

  • Foran E, Trotti D (2009) Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 11:1587–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. Eur J Neurosci 9:1961–1969

    Article  CAS  PubMed  Google Scholar 

  • Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    CAS  PubMed  Google Scholar 

  • Gaillet S, Plachez C, Malaval F, Bezine MF, Recasens M (2001) Transient increase in the high affinity [3H]-l-glutamate uptake activity during in vitro development of hippocampal neurons in culture. Neurochem Int 38:293–301

    Article  CAS  PubMed  Google Scholar 

  • Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH Jr, Pasinelli P, Trotti D (2007) A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282:32480–32490

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MI, Krizman-Genda E, Robinson MB (2007) Caveolin-1 regulates the delivery and endocytosis of the glutamate transporter, excitatory amino acid carrier 1. J Biol Chem 282:29855–29865

    Article  CAS  PubMed  Google Scholar 

  • Gray C, Marie H, Arora M, Tanaka K, Boyde A, Jones S, Attwell D (2001) Glutamate does not play a major role in controlling bone growth. J Bone Miner Res 16:742–749

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Luo D, Sopjani M, Bhavsar SK, Lang F (2014) Down-regulation of the epithelial Na(+) channel ENaC by Janus kinase 2. J Membr Biol 247:331–338

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Honisch S, Schmid E, Jilani K, Szteyn K, Bhavsar S, Singh Y, Palmada M, Umbach AT, Shumilina E, Lang F (2015a) The role of janus kinase 3 in the regulation of Na(+)/K(+) ATPase under energy depletion. Cell Physiol Biochem 36:727–740

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Warsi J, Elvira B, Almilaji A, Shumilina E, Lang F (2015b) Up-regulation of Kv1.3 channels by janus kinase 2. J Membr Biol 248:309–317

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Dykes-Hoberg M, Tanaka K, Rothstein JD, Bergles DE (2004) Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells. J Neurosci 24:103–111

    Article  CAS  PubMed  Google Scholar 

  • Hurtado O, Pradillo JM, Fernandez-Lopez D, Morales JR, Sobrino T, Castillo J, Alborch E, Moro MA, Lizasoain I (2008) Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke. Neurobiol Dis 29:123–131

    Article  CAS  PubMed  Google Scholar 

  • Karlsson RM, Tanaka K, Heilig M, Holmes A (2008) Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol Psychiatry 64:810–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34:1578–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20:687–702

    Article  CAS  PubMed  Google Scholar 

  • Lawton DM, Furness DN, Lindemann B, Hackney CM (2000) Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur J Neurosci 12:3163–3171

    Article  CAS  PubMed  Google Scholar 

  • Lee JA, Long Z, Nimura N, Iwatsubo T, Imai K, Homma H (2001) Localization, transport, and uptake of D-aspartate in the rat adrenal and pituitary glands. Arch Biochem Biophys 385:242–249

    Article  CAS  PubMed  Google Scholar 

  • Li HS, Niedzielski AS, Beisel KW, Hiel H, Wenthold RJ, Morley BJ (1994) Identification of a glutamate/aspartate transporter in the rat cochlea. Hear Res 78:235–242

    Article  CAS  PubMed  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911

    Article  CAS  PubMed  Google Scholar 

  • Maragakis NJ, Dietrich J, Wong V, Xue H, Mayer-Proschel M, Rao MS, Rothstein JD (2004) Glutamate transporter expression and function in human glial progenitors. Glia 45:133–143

    Article  PubMed  Google Scholar 

  • Mason DJ, Suva LJ, Genever PG, Patton AJ, Steuckle S, Hillam RA, Skerry TM (1997) Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? Bone 20:199–205

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Suzuki A, Ishii G, Oshino S, Otani K, Goto K (2007) The -181 A/C polymorphism in the excitatory amino acid transporter-2 gene promoter affects the personality trait of reward dependence in healthy subjects. Neurosci Lett 427:99–102

    Article  CAS  PubMed  Google Scholar 

  • Milton ID, Banner SJ, Ince PG, Piggott NH, Fray AE, Thatcher N, Horne CH, Shaw PJ (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Brain Res Mol Brain Res 52:17–31

    Article  CAS  PubMed  Google Scholar 

  • Miralles VJ, Martinez-Lopez I, Zaragoza R, Borras E, Garcia C, Pallardo FV, Vina JR (2001) Na + dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress. Brain Res 922:21–29

    Article  CAS  PubMed  Google Scholar 

  • Munch C, Zhu BG, Mink A, Seefried U, Riepe MW, Ludolph AC, Meyer T (2008) Chemical hypoxia facilitates alternative splicing of EAAT2 in presymptomatic APP23 transgenic mice. Neurochem Res 33:1005–1010

    Article  PubMed  Google Scholar 

  • Munoz C, Pakladok T, Almilaji A, Elvira B, Decher N, Shumilina E, Lang F (2014) Up-regulation of Kir2.1 (KCNJ2) by the serum & glucocorticoid inducible SGK3. Cell Physiol Biochem 33:491–500

    Article  CAS  PubMed  Google Scholar 

  • O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895

    Article  PubMed  Google Scholar 

  • Ong HL, Ambudkar IS (2011) The dynamic complexity of the TRPC1 channelosome. Channels (Austin) 5:424–431

    Article  CAS  Google Scholar 

  • Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodriguez-Antiguedad A, Matute C (2008) Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 195:194–198

    Article  CAS  PubMed  Google Scholar 

  • Pavlides S, Gutierrez-Pajares JL, Danilo C, Lisanti MP, Frank PG (2012) Atherosclerosis, caveolae and caveolin-1. Adv Exp Med Biol 729:127–144

    Article  CAS  PubMed  Google Scholar 

  • Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 16:3822–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilch PF, Liu L (2011) Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 22:318–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakhade SN, Loeb JA (2008) Focal reduction of neuronal glutamate transporters in human neocortical epilepsy. Epilepsia 49:226–236

    Article  CAS  PubMed  Google Scholar 

  • Rakhade SN, Shah AK, Agarwal R, Yao B, Asano E, Loeb JA (2007) Activity-dependent gene expression correlates with interictal spiking in human neocortical epilepsy. Epilepsia 48(Suppl 5):86–95

    Article  CAS  PubMed  Google Scholar 

  • Redecker P, Pabst H (2000) Immunohistochemical study of the glutamate transporter proteins GLT-1 and GLAST in rat and gerbil pineal gland. J Pineal Res 28:179–184

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  CAS  PubMed  Google Scholar 

  • Rumbaugh JA, Li G, Rothstein J, Nath A (2007) Ceftriaxone protects against the neurotoxicity of human immunodeficiency virus proteins. J Neurovirol 13:168–172

    Article  CAS  PubMed  Google Scholar 

  • Schniepp R, Kohler K, Ladewig T, Guenther E, Henke G, Palmada M, Boehmer C, Rothstein JD, Broer S, Lang F (2004) Retinal colocalization and in vitro interaction of the glutamate transporter EAAT3 and the serum- and glucocorticoid-inducible kinase SGK1 [correction]. Invest Ophthalmol Vis Sci 45:1442–1449

    Article  PubMed  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowa G (2012) Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern CM, Mermelstein PG (2010) Caveolin regulation of neuronal intracellular signaling. Cell Mol Life Sci 67:3785–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takumi Y, Matsubara A, Danbolt NC, Laake JH, Storm-Mathisen J, Usami S, Shinkawa H, Ottersen OP (1997) Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience 79:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Lai L, Guo H, Lin Y, Butchbach ME, Chang Y, Lin CL (2007) Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem 282:1727–1737

    Article  CAS  PubMed  Google Scholar 

  • Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci 9:1646–1655

    Article  CAS  PubMed  Google Scholar 

  • Utsumi M, Ohno K, Onchi H, Sato K, Tohyama M (2001) Differential expression patterns of three glutamate transporters (GLAST, GLT1 and EAAC1) in the rat main olfactory bulb. Brain Res Mol Brain Res 92:1–11

    Article  CAS  PubMed  Google Scholar 

  • van Landeghem FK, Weiss T, Oehmichen M, von Deimling A (2006) Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma 23:1518–1528

    Article  PubMed  Google Scholar 

  • van Landeghem FK, Weiss T, von Deimling A (2007) Expression of PACAP and glutamate transporter proteins in satellite oligodendrocytes of the human CNS. Regul Pept 142:52–59

    Article  PubMed  Google Scholar 

  • Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739

    Article  CAS  PubMed  Google Scholar 

  • Warsi J, Dong L, Elvira B, Salker MS, Shumilina E, Hosseinzadeh Z, Lang F (2014a) SPAK dependent regulation of peptide transporters PEPT1 and PEPT2. Kidney Blood Press Res 39:388–398

    Article  CAS  PubMed  Google Scholar 

  • Warsi J, Elvira B, Bissinger R, Shumilina E, Hosseinzadeh Z, Lang F (2014b) Downregulation of peptide transporters PEPT1 and PEPT2 by oxidative stress responsive kinase OSR1. Kidney Blood Press Res 39:591–599

    Article  CAS  PubMed  Google Scholar 

  • Warsi J, Hosseinzadeh Z, Elvira B, Bissinger R, Shumilina E, Lang F (2014c) Regulation of ClC-2 activity by SPAK and OSR1. Kidney Blood Press Res 39:378–387

    Article  CAS  PubMed  Google Scholar 

  • Warsi J, Elvira B, Bissinger R, Hosseinzadeh Z, Lang F (2015a) Regulation of voltage-gated K(+) channel Kv1.5 by the janus kinase JAK3. J Membr Biol 248:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Warsi J, Singh Y, Elvira B, Hosseinzadeh Z, Lang F (2015b) Regulation of large conductance voltage-and Ca2 + -activated K + channels by the janus kinase JAK3. Cell Physiol Biochem 37:297–305

    Article  CAS  PubMed  Google Scholar 

  • Zschocke J, Bayatti N, Behl C (2005) Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: association of GLT-1 with non-caveolar lipid rafts. Glia 49:275–287

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch and Lejla Subasic as well as technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft, Grant-Number: GRK 1302, SFB 773 B4/A1, and La 315/13-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors. All animal experiments conform with the ‘European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes’ (Council of Europe No 123, Strasbourg 1985) and were conducted according to the German law for the welfare of animals. The surgical procedures on the adult Xenopus laevis frogs were reviewed and approved by the respective government authority of the state Baden-Württemberg (Regierungspräsidium) prior to the start of the study (Anzeige für Organentnahme nach §36).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abousaab, A., Warsi, J., Elvira, B. et al. Caveolin-1 Sensitivity of Excitatory Amino Acid Transporters EAAT1, EAAT2, EAAT3, and EAAT4. J Membrane Biol 249, 239–249 (2016). https://doi.org/10.1007/s00232-015-9863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9863-0

Keywords

Navigation