Skip to main content
Log in

Development of Silica Gel-Supported Modified Macroporous Chitosan Membranes for Enzyme Immobilization and Their Characterization Analyses

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The present work was aimed at developing stability enhanced silica gel-supported macroporous chitosan membrane for immobilization of enzymes. The membrane was surface modified using various cross-linking agents for covalent immobilization of enzyme Bovine serum albumin. The results of FT-IR, UV–vis, and SEM analyses revealed the effect of cross-linking agents and confirmed the formation of modified membranes. The presence of silica gel as a support could provide a large surface area, and therefore, the enzyme could be immobilized only on the surface, and thus minimized the diffusion limitation problem. The resultant enzyme immobilized membranes were also characterized based on their activity retention, immobilization efficiency, and stability aspects. The immobilization process increased the activity of immobilized enzyme even higher than that of total (actual) activity of native enzyme. Thus, the obtained macroporous chitosan membranes in this study could act as a versatile host for various guest molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2005) Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. J Membr Sci 262:91–99

    Article  CAS  Google Scholar 

  • Asaeda M, Ishida M, Waki T (2005) Pervaporation of aqueous organic acid solutions by porous ceramic membranes. J Chem Eng Jpn 38:336–343

    Article  CAS  Google Scholar 

  • Bautista FM, Bravo MC, Campelo JM, Garcia A, Luna D, Marinas JM, Romero AA (1999) Covalent immobilization of acid phosphatase on amorphous AlPO4 support. J Mol Catal B 6:473–481

    Article  CAS  Google Scholar 

  • Beppu MM, Santana CC (2001) In vitro biomineralization of chitosan. Key Eng Mater 31:192–195

    Google Scholar 

  • Beppu MM, Arruda EJ, Vieira RS, Santos NN (2004) Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. J Membr Sci 240:227–235

    Article  CAS  Google Scholar 

  • Beppu MM, Vieira RS, Aimoli CG, Santana CC (2007) Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Membr Sci 301:126–130

    Article  CAS  Google Scholar 

  • Desai K, Kit K, Li J, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Ge J, Cui Y, Yan Y, Jiang W (2000) The effect of structure of pervaporation of chitosan membrane. J Membr Sci 165:75–81

    Article  CAS  Google Scholar 

  • Hong P-Z, Li S-D, Ou C-Y, Li C-P, Yang L, Zhang C-H (2007) Thermogravimetric analysis of chitosan. J Appl Polym Sci 105:547–551

    Article  CAS  Google Scholar 

  • Iwata H, Saito K, Furusaki S (1991) Adsorption characteristics of an immobilized metal affinity membrane. Biotechnol Prog 7:412–418

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Saito K, Lee W (2003) Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J Chromatogr B 790:131–142

    Article  CAS  Google Scholar 

  • Kuraoka K, Kubo N, Yazawa T (2000) Microporous silica xerogel membrane with high selectivity. J Sol-Gel Sci Technol 19:515–518

    Article  CAS  Google Scholar 

  • Manjubala I, Scheler S, Bössert J, Jandt KD (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2:75–84

    Article  CAS  PubMed  Google Scholar 

  • Nisnevitch M, Firer MA (2001) The solid phase in affinity chromatography: strategies for antibody attachment. J Biochem Biophys Methods 49:467–480

    Article  CAS  PubMed  Google Scholar 

  • Oh J-T, Kim J-H (2000) Preparation and properties of immobilized amyloglucosidase on nonporous PS/PNaSS microspheres. Enzyme Microb Technol 27:356–361

    Article  CAS  PubMed  Google Scholar 

  • Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30:5849–5855

    Article  CAS  Google Scholar 

  • Plueddmann EP (1991) Silane coupling agents. Plenum, New York

    Book  Google Scholar 

  • Shentu J, Wu J, Song W, Jia Z (2005) Chitosan microspheres as immobilized dye affinity support for catalase adsorption. Int J Biol Macromol 37:42–46

    Article  CAS  PubMed  Google Scholar 

  • Singh DK, Ray AR (1998) Characterization of grafted chitosan films. Carbohyd Polym 36:251–255

    Article  CAS  Google Scholar 

  • Suen SY, Lin SY, Chin HC (2000) Effects of spaces arms on Cibacron Blue 3GA immobilization and lysozyme adsorption using regenerated cellulose membrane discs. Ind Eng Chem Res 39:478–487

    Article  CAS  Google Scholar 

  • Uragami T, Matsuda T, Okuno H, Miyata T (1994) Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions. J Membr Sci 88:243–251

    Article  CAS  Google Scholar 

  • Wang XP, Shen ZQ, Zhang FY (1998) Pervaporation separation of water alcohol mixtures through hydroxypropylated chitosan membranes. J Appl Polym Sci 69:2035–2041

    Article  CAS  Google Scholar 

  • Wei YC, Hudson SM, Mayer JM, Kaplan DL (1992) The crosslinking of chitosan fibers. J Polym Sci 30:2187–2193

    Article  CAS  Google Scholar 

  • Zakaria Z, Izzah Z, Jawaid M, Hassan A (2012) Effect of degree of deacetylation of chitosan on thermal stability and compatibility of chitosan-polyamide blend. Bioresources 7:5568–5580

    Article  Google Scholar 

  • Zeng X, Ruckenstein E (1996a) Supported chitosan-dye affinity membranes and their protein adsorption. J Membr Sci 117:271–278

    Article  CAS  Google Scholar 

  • Zeng X, Ruckenstein E (1996b) Control of pore sizes in macroporous chitosan and chitin membranes. Ind Eng Chem Res 35:4169–4175

    Article  CAS  Google Scholar 

  • Zeng X, Ruckenstein E (1998) Cross-linked macroporous chitosan anion-exchange membranes for protein separations. J Membr Sci 148:195–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Central University and National Science Council (NSC, (Grant No.: NSC100-2923-E-008-001-MY3), Taiwan, Republic of China (ROC) and Department of Science and Technology (DST, Ref no/S/FST/ESI-101/2010), New Delhi, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiunn-Fwu Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, WY., Thirumavalavan, M., Malini, M. et al. Development of Silica Gel-Supported Modified Macroporous Chitosan Membranes for Enzyme Immobilization and Their Characterization Analyses. J Membrane Biol 247, 549–559 (2014). https://doi.org/10.1007/s00232-014-9671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9671-y

Keywords

Navigation