Skip to main content
Log in

Experimental assessment on the thermal and moisture migration of sand-based materials combined with kaolin and graphite

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The thermal and moisture diffusion and soil water diffusivity in sand-based backfill materials were evaluated. Compared with the original sand, the thermal conductivity of sand/kaolin and sand/kaolin/graphite blends (5% blending percentage each) with 10% water content increased by 9% and 17%, respectively, and the average values at all test points for their soil water diffusivity reduced by 68% and 84%, respectively. Based on the unsteady heat conduction differential equation, the average apparent thermal diffusivity at all test points for the sand/kaolin blend increased by 7% compared with the sand, and that for the sand/kaolin blend with adding the graphite rose by 173%. The main moisture effect range in the sand/kaolin blend was about 2/5 of the sand. The thermal diffusion in the sand was prompted by kaolin additive, which could be further highly improved after adding the graphite. Kaolin and graphite could be available additives against the moisture migration in the sand-based backfill material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C :

Specific water capacity (cm1)

D :

Soil water diffusivity (cm2 min1)

I :

Electric current (A)

K :

Hydraulic conductivity (cm min1)

l :

Length of the thermal probe (m)

q l :

Heat flux (W m-2)

T :

Temperature (°C)

t :

Time (s)

U :

Heating voltage (V)

W :

Water content (d.b.)

x :

Distance (m)

α :

Thermal diffusivity (m2 s1)

γ w :

Degree of moisture migration

Δ :

Difference

η :

Boltzmann transformation parameter (cm min−0.5)

θ :

Volumetric moisture content (cm3 cm3)

λ :

Thermal conductivity (W m-1 K-1)

ρ :

Density (kg m-3)

φ :

Degree of thermal migration

a:

Apparent

h:

Heating

i:

Initial

s:

Saturated state

References

  1. Jia GS, Tao ZY, Meng XZ, Ma CF, Chai JC, Jin LW (2019) Review of effective thermal conductivity models of rock-soil for geothermal energy applications. Geothermics 77:1–11. https://doi.org/10.1016/j.geothermics.2018.08.001

    Article  Google Scholar 

  2. Yoon S, Kim M-J (2019) Prediction of ground thermal diffusivity from thermal response tests. Energy Build 185:239–246. https://doi.org/10.1016/j.enbuild.2018.12.027

    Article  Google Scholar 

  3. Shrestha D, Rizvi ZH, Wuttke F (2019) Effective thermal conductivity of unsaturated granular geocomposite using lattice element method. Heat Mass Transf 55:1671–1683. https://doi.org/10.1007/s00231-018-02544-3

    Article  Google Scholar 

  4. Luo J, Rohn J, Xiang W, Bertermann D, Blum P (2016) A review of ground investigations for ground source heat pump (GSHP) systems. Energy Build 117:160–175. https://doi.org/10.1016/j.enbuild.2016.02.038

    Article  Google Scholar 

  5. Kulkarni NG, Bhandarkar UV, Puranik BP, Rao AB (2016) Experimental determination of thermal properties of alluvial soil. Heat Mass Transf 52:2661–2669. https://doi.org/10.1007/s00231-016-1772-y

    Article  Google Scholar 

  6. Li B, Zhang J, Ghoreishi-Madiseh SA, Rodrigues de Brito MA, Deng X, Kuyuk AF (2020) Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines. J Clean Prod 275:122647. https://doi.org/10.1016/j.jclepro.2020.122647

    Article  Google Scholar 

  7. Han C, Yu X (2016) Sensitivity analysis of a vertical geothermal heat pump system. Appl Energy 170:148–160. https://doi.org/10.1016/j.apenergy.2016.02.085

    Article  Google Scholar 

  8. Tang F, Lahoori M, Nowamooz H, Rosin-Paumier S, Masrouri F (2021) A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger. Renew Energy 172: 740-752. https://doi.org/10.1016/j.renene.2021.03.025

  9. Cao D, Shi B, Loheide SP, Gong X, Zhu H-H, Wei G, Yang L (2018) Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A–DTS) technology. Energy Build 173:239–251. https://doi.org/10.1016/j.enbuild.2018.01.022

    Article  Google Scholar 

  10. Zhou T, Chen M, Liang B (2021) Thermal performance of a ground U-shaped tube with twisted tapes in sand/graphite backfill materials. Exp Heat Transf 34:186–200. https://doi.org/10.1080/08916152.2020.1726528

    Article  Google Scholar 

  11. Blázquez CS, Martín AF, Nieto IM, García PC, Sánchez Pérez LS, González-Aguilera D (2017) Analysis and study of different grouting materials in vertical geothermal closed-loop systems. Renew Energy 114:1189–1200. https://doi.org/10.1016/j.renene.2017.08.011

    Article  Google Scholar 

  12. Li HF, Chen MQ, Liang B, Fu BA (2020) Thermal characteristics in a spiral-tube buried in sand/bentonite/graphite under cooling and heating modes. Exp Heat Transf 33:547–559. https://doi.org/10.1080/08916152.2019.1680580

    Article  Google Scholar 

  13. Kaya GG, Yilmaz E, Deveci H (2018) Sustainable bean pod/calcined kaolin reinforced epoxy hybrid composites with enhanced mechanical, water sorption and corrosion resistance properties. Constr Build Mater 162:272–279. https://doi.org/10.1016/j.conbuildmat.2017.12.046

    Article  Google Scholar 

  14. Lv P, Liu C, Rao Z, Yan J (2016) Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl Energy 182:475–487. https://doi.org/10.1016/j.apenergy.2016.08.147

    Article  Google Scholar 

  15. Sakaguchi I, Momose T, Kasubuchi T (2007) Decrease in thermal conductivity with increasing temperature in nearly dry sandy soil. Eur J Soil Sci 58:92–97. https://doi.org/10.1111/j.1365-2389.2006.00803.x

    Article  Google Scholar 

  16. Yu X, Zhang N, Pradhan A, Puppala AJ (2016) Thermal conductivity of sand–kaolin clay mixtures. Environ Geotech 3:190–202. https://doi.org/10.1680/jenge.15.00022

    Article  Google Scholar 

  17. Zhang N, Yu X, Pradhan A (2017) Application of a thermo-time domain reflectometry probe in sand-kaolin clay mixtures. Eng Geol 216:98–107. https://doi.org/10.1016/j.enggeo.2016.11.016

    Article  Google Scholar 

  18. Liang B, Chen M, Fu B, Li H (2019) Investigation on the thermal and flow performances of a vertical spiral-tube ground heat exchanger in sand combined with kaolin additive. Energy Build 190:235–245. https://doi.org/10.1016/j.enbuild.2019.03.003

    Article  Google Scholar 

  19. Qu Y, Wang S, Zhou D, Tian Y (2020) Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renew Energy 146:2637–2645. https://doi.org/10.1016/j.renene.2019.08.098

    Article  Google Scholar 

  20. Anadão P, Sato LF, Wiebeck H (2018) Study of the influence of graphite content on polysulfone-graphite composite membrane properties. J Therm Anal Calorim 134:1647–1656. https://doi.org/10.1007/s10973-018-7700-2

    Article  Google Scholar 

  21. Lee C, Park M, Min S, Kang S-H, Sohn B, Choi H (2011) Comparison of effective thermal conductivity in closed-loop vertical ground heat exchangers. Appl Therm Eng 31:3669–3676. https://doi.org/10.1016/j.applthermaleng.2011.01.016

    Article  Google Scholar 

  22. Delaleux F, Py X, Olives R, Dominguez A (2012) Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Appl Therm Eng 33–34:92–99. https://doi.org/10.1016/j.applthermaleng.2011.09.017

    Article  Google Scholar 

  23. Hollar C, Fleming A, Davis K, Budwig R, Jensen C, Estrada D (2019) A parametric study for in-pile use of the thermal conductivity needle probe using a transient, multilayered analytical model. Int J Therm Sci 145:106028. https://doi.org/10.1016/j.ijthermalsci.2019.106028

    Article  Google Scholar 

  24. Li HF, Chen MQ, Fu BA, Liang B (2019) Evaluation on the thermal and moisture diffusion behavior of sand/bentonite. Appl Therm Eng 151:55–65. https://doi.org/10.1016/j.applthermaleng.2019.01.100

    Article  Google Scholar 

  25. Kim D, Oh S (2019) Relationship between the thermal properties and degree of saturation of cementitious grouts used in vertical borehole heat exchangers. Energy Build 201:1–9. https://doi.org/10.1016/j.enbuild.2019.07.017

    Article  Google Scholar 

  26. Agrawal K, Misra R, Agrawal G (2019) Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material. Renew Energy 146:2008–2023. https://doi.org/10.1016/j.renene.2019.08.044

    Article  Google Scholar 

  27. Stoof CR, Wesseling JG, Ritsema CJ (2010) Effects of fire and ash on soil water retention. Geoderma 159:276–285. https://doi.org/10.1016/j.geoderma.2010.08.002

    Article  Google Scholar 

  28. Kučerík J (2020) Chemical structure of soil organic matter. J Therm Anal Calorim 140:233–242. https://doi.org/10.1007/s10973-019-08802-8

    Article  Google Scholar 

  29. Minasny B, McBratney AB (2018) Limited effect of organic matter on soil available water capacity. Eur J Soil Sci 69:39–47. https://doi.org/10.1111/ejss.12475

    Article  Google Scholar 

  30. Gao H, Shao M (2015) Effects of temperature changes on soil hydraulic properties. Soil Tillage Res 153:145–154. https://doi.org/10.1016/j.still.2015.05.003

    Article  Google Scholar 

  31. Hayek M (2018) An efficient analytical model for horizontal infiltration in soils. J Hydrol 564:1120–1132. https://doi.org/10.1016/j.jhydrol.2018.07.058

    Article  Google Scholar 

  32. Mengistu AG, Mavimbela SSW, van Rensburg LD (2019) Characterisation of the soil pore system in relation to its hydraulic functions in two South African aeolian soil groups. S Afr J Plant Soil 36:107–116. https://doi.org/10.1080/02571862.2018.1487594

    Article  Google Scholar 

  33. Bruce RR, Klute A (1956) The Measurement of Soil Moisture Diffusivity. Soil Sci Soc Am J 20:458–462. https://doi.org/10.2136/sssaj1956.03615995002000040004x

    Article  Google Scholar 

  34. Evangelides C, Arampatzis G, Tzimopoulos C (2010) Estimation of Soil Moisture Profile and Diffusivity Using Simple Laboratory Procedures. Soil Sci 175:118–127. https://doi.org/10.1097/SS.0b013e3181d53bb6

    Article  Google Scholar 

  35. Espejo A, Giráldez JV, Vanderlinden K, Taguas EV, Pedrera A (2014) A method for estimating soil water diffusivity from moisture profiles and its application across an experimental catchment. J Hydrol 516:161–168. https://doi.org/10.1016/j.jhydrol.2014.01.072

    Article  Google Scholar 

  36. Villarreal R, Lozano LA, Melani EM, Salazar MP, Otero MF, Soracco CG (2019) Diffusivity and sorptivity determination at different soil water contents from horizontal infiltration. Geoderma 338:88–96. https://doi.org/10.1016/j.geoderma.2018.11.045

    Article  Google Scholar 

  37. Ma D, Zhang J, Lai J, Wang Q (2016) An improved method for determining Brooks-Corey model parameters from horizontal absorption. Geoderma 263:122–131. https://doi.org/10.1016/j.geoderma.2015.09.007

    Article  Google Scholar 

  38. Wang Q, Shao M, Horton R (2004) A Simple Method for Estimating Water Diffusivity of Unsaturated Soils. Soil Sci Soc Am J 68:713–718. https://doi.org/10.2136/sssaj2004.0713

    Article  Google Scholar 

  39. Bikbulatova S, Tahmasebi A, Zhang Z, Rish SK, Yu J (2018) Understanding water retention behavior and mechanism in bio-char. Fuel Process Technol 169:101–111. https://doi.org/10.1016/j.fuproc.2017.09.025

    Article  Google Scholar 

  40. Alghamdi AG, Alkhasha A, Ibrahim HM (2020) Effect of biochar particle size on water retention and availability in a sandy loam soil. J Saudi Chem Soc 24:1042–1050. https://doi.org/10.1016/j.jscs.2020.11.003

    Article  Google Scholar 

  41. She W, Cao X, Zhao G, Cai D, Jiang J, Hu X (2018) Experimental and numerical investigation of the effect of soil type and fineness on soil frost heave behavior. Cold Reg Sci Technol 148:148–158. https://doi.org/10.1016/j.coldregions.2018.01.015

    Article  Google Scholar 

  42. Chen Y, Gao Y, Chen L, Li H, Liu K, Sun B (2019) An experimental investigation of matrix components and grain size influence on the permeability in porous medium containing hydrate. Heat Mass Transf 55:1563–1570. https://doi.org/10.1007/s00231-018-02542-5

    Article  Google Scholar 

  43. Kaiser M, Kleber M, Berhe AA (2015) How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference. Soil Biol Biochem 80:324–340. https://doi.org/10.1016/j.soilbio.2014.10.018

    Article  Google Scholar 

  44. Boari F, Donadio A, Pace B, Schiattone MI, Cantore V (2016) Kaolin improves salinity tolerance, water use efficiency and quality of tomato. Agric Water Manag 167:29–37. https://doi.org/10.1016/j.agwat.2015.12.021

    Article  Google Scholar 

  45. Ćosić M, Djurović N, Todorović M, Maletić R, Zečević B, Stričević R (2015) Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper. Agric Water Manag 159:139–147. https://doi.org/10.1016/j.agwat.2015.05.014

    Article  Google Scholar 

  46. Chen H, Ding H, Liu S, Chen X, Wu W, Wang Q (2014) Experimental study on heat and moisture transfer in soil during soil heat charging for solar-soil source heat pump compound system. Appl Therm Eng 70:1018–1024. https://doi.org/10.1016/j.applthermaleng.2014.06.030

    Article  Google Scholar 

  47. Hedayati-Dezfooli M, Leong WH (2017) Experimental evaluation of the measurement errors of soil water content due to interference of two adjacent TDR probes. Exp Heat Transf 30:475–488. https://doi.org/10.1080/08916152.2017.1315468

    Article  Google Scholar 

  48. Jaszczur M, Polepszyc I, Sapińska-Śliwa A, Gonet A (2017) An analysis of the numerical model influence on the ground temperature profile determination. J Therm Sci 26:82–88. https://doi.org/10.1007/s11630-017-0913-z

    Article  Google Scholar 

  49. Wang Z, Wang F, Ma Z, Wang X, Wu X (2016) Research of heat and moisture transfer influence on the characteristics of the ground heat pump exchangers in unsaturated soil. Energy Build 130:140–149. https://doi.org/10.1016/j.enbuild.2016.08.043

    Article  Google Scholar 

  50. Li Z, Chen M, Zhou T, Fu B, Liang B, Jia L (2017) Heat transfer performance of a vertical buried internally helically groove tube in soil/polyacrylamide under hot climate. Appl Therm Eng 124:403–412. https://doi.org/10.1016/j.applthermaleng.2017.06.041

    Article  Google Scholar 

  51. Zhou T, Chen M, Fu B, Liang B, Li Q (2018) Investigation on thermal and moisture migration performance in sand combined with graphite. Appl Therm Eng 145:212–220. https://doi.org/10.1016/j.applthermaleng.2018.09.038

    Article  Google Scholar 

  52. Wang Y, Wang S, He S (2020) Simulation of temperature and moisture fields around a single borehole ground heat exchanger: effects of moisture migration and groundwater seepage. J Therm Anal Calorim 141:573–586. https://doi.org/10.1007/s10973-019-09193-6

    Article  Google Scholar 

  53. Carson JK, Kemp RM (2014) The influence of particle size on the accuracy of the thermal conductivity probe. J Food Eng 142:46–48. https://doi.org/10.1016/j.jfoodeng.2014.06.011

    Article  Google Scholar 

  54. Kargas G, Londra P, Kerkides P (2019) Investigation of the Flux-Concentration Relation for Horizontal Flow in Soils. Water 11:2442. https://doi.org/10.3390/w11122442

    Article  Google Scholar 

  55. Shao M, Horton R (1998) Integral Method for Estimating Soil Hydraulic Properties. Soil Sci Soc Am J 62:585–592. https://doi.org/10.2136/sssaj1998.03615995006200030005x

    Article  Google Scholar 

  56. Vanerek A, Alince B, Ven TGMVD (2006) Delamination and flocculation efficiency of sodium-activated kaolin and montmorillonite. Colloids Surf A Physicochem Eng Asp 273:193–201. https://doi.org/10.1016/j.colsurfa.2005.08.022

    Article  Google Scholar 

  57. Baruah TC, Hasegawa S (2001) In-situ measurement of soil evaporation from a volcanic ash soil by TDR technique using soil water diffusivity. Geoderma 102:317–328. https://doi.org/10.1016/S0016-7061(01)00039-8

    Article  Google Scholar 

  58. Alrtimi A, Rouainia M, Haigh S (2016) Thermal conductivity of a sandy soil. Appl Therm Eng 106:551–560. https://doi.org/10.1016/j.applthermaleng.2016.06.012

    Article  Google Scholar 

  59. Zhang M, Bi J, Chen W, Zhang X, Lu J (2018) Evaluation of calculation models for the thermal conductivity of soils. Int Commun Heat Mass Transf 94:14–23. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.005

    Article  Google Scholar 

  60. Anjum F, Naz MY, Ghaffar A, Shukrullah S, AbdEl-Salam NM, Ibrahim KA (2021) Moisture and Temperature Response of Structural and Lithology based Thermophysical and Energy Saving Traits of Limestone using Experimental and Least-Square Fitting Methods. J Therm Sci 30:551–561. https://doi.org/10.1007/s11630-021-1416-5

    Article  Google Scholar 

  61. Qiu L, Du Y, Bai Y, Feng Y, Zhang X, Wu J, Wang X, Xu C (2021) Experimental Characterization and Model Verification of Thermal Conductivity from Mesoporous to Macroporous SiOC Ceramics. J Therm Sci 30:465–476. https://doi.org/10.1007/s11630-021-1422-7

    Article  Google Scholar 

  62. Arias-Penas D, Castro-García MP, Rey-Ronco MA, Alonso-Sánchez T (2015) Determining the thermal diffusivity of the ground based on subsoil temperatures. Preliminary results of an experimental geothermal borehole study Q-THERMIE-UNIOVI. Geothermics 54:35–42. https://doi.org/10.1016/j.geothermics.2014.10.006

    Article  Google Scholar 

  63. Saha BP, Johnson R, Jayaram V (2012) Comparative Evaluation of Thermal Conductivity of Zirconia Solid and Honeycomb Structures. Exp Heat Transf 25:267–281. https://doi.org/10.1080/08916152.2011.582570

    Article  Google Scholar 

  64. Hedayati-Dezfooli M, Leong WH (2019) An experimental study of coupled heat and moisture transfer in soils at high temperature conditions for a medium coarse soil. Int J Heat Mass Transf 137:372–389. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.131

    Article  Google Scholar 

  65. Songok J, Salminen P, Toivakka M (2014) Temperature effects on dynamic water absorption into paper. J Colloid Interface Sci 418:373–377. https://doi.org/10.1016/j.jcis.2013.12.017

    Article  Google Scholar 

  66. Li M, Wu Y, Zhao Z (2013) Effect of endothermic reaction mechanisms on the coupled heat and mass transfers in a porous packed bed with Soret and Dufour effects. Int J Heat Mass Transf 67:164–172. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.004

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under No. 51376017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqian Chen.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose. The authors did not receive support from any organization for the submitted work. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Chen, M. & Guan, J. Experimental assessment on the thermal and moisture migration of sand-based materials combined with kaolin and graphite. Heat Mass Transfer 58, 1075–1089 (2022). https://doi.org/10.1007/s00231-021-03162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03162-2

Navigation