Skip to main content

Advertisement

Log in

The influence of feedstock stacking shape on the drying performance of conveyor belt dryer

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Conveyor belt dryers have been applied extensively in the drying process even though the problem of uneven drying along the dryer length exist. The general solution is to install an auxiliary device in the chamber to adjust the arrangement of air passages. A series of problems, however, are observed, such as occupying internal space and increasing flow resistance. A novel flow field improvement technology has been developed and conducted by Computational Fluid Dynamics (CFD) with a modified heat and moisture transfer model and validated by physical verification. The results show that specific stacking of feedstock characterized as vertical serration stacking with 30° angle and 43.0 mm interval can help to improve drying performance. Three indices (Integrate area, Mavg, and Mu) for the evaluation of velocity distribution confirms that most uniform moisture of products is obtained with the specific characteristics. This work presents an unconventional method to solve the problem of uneven air-distribution and thus improving drying efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code availability

User define function code.

#include ‘‘udf.h’’.

#define AEC21.69.

#define BEC 18.077.

#define CEC 112.35.

#define PATM 101,325.

#define RHOB 154.2

DEFINE_SOURCE(mass_source, c, t, dS, eqn).

{Real Tabs, T, W, w, pe, re, We, Source_w, drying_constant, psat;

Tabs = C_T(c,t);

T = Tabs-273.15;

psat = 6.0e25/pow(Tabs,5)*exp(-6800/Tabs);

W = C_UDMI(c, t, 0);

w = C_UDSI(c, t, 0);

pe = We*PATM/(0.622 + we);

re = pe/psat;

We = -1*BEC*log(-(T + CEC)/AEC*log(re));

drying_constant = 8928.138* exp(-6095.901/Tabs).

C_UDMI(c, t, 3) = re;

C_UDMI(c, t, 2) = We;

C_UDMI(c, t, 1) = -RHOB*drying_constant*(W-We);

Source_w = C_UDMI(c, t, 1);

dS[eqn] = 0.0;

return Source_w;}

DEFINE_SOURCE(hydro_source, c, t, dS, eqn).

{Real Tabs, T, we, psat, pe, re, We, dpsatdt, drdt, hsbyhv, hs, Source_t;

Tabs = C_T(c,t);

T = Tabs-273.15;

we = C_UDSI(c, t, 0);

psat = 0.61078*exp(17.27 T/Tabs);

pe = we*PATM/(0.622 + we);

re = pe/psat;

We = -1*BEC*log(-(T + CEC)/AEC*log(re));

dpsatdt = psat/Tabs*(-5 + 6800/Tabs);

drdt = AEC*re/pow((T + CEC),2)*exp(-BEC*We);

hsbyhv = 1 + psat/re + 1/dpsatdt*drdt;

hs = hsbyhv*(2501.33–2.363*T)*1.0 exp3;

C_UDMI(c,t,4) = hs;

Source_t = C_UDMI(c,t,1)* hs;

dS[eqn] = 0.0;

return Source_t;}

Abbreviations

Re:

Reynolds Number

Nu:

Nusselt Number

f:

Friction coefficient

T:

Temperature K

l:

Length m

C2:

Inertia resistance

Cb:

Heat capacity kJ/(kg∙K)

keff:

Effective thermal conductivity W/(m∙K)

Deff:

Moisture diffusion m2/s

I:

Turbulence intensity

D:

Hydraulic diameter m

g:

Gravitational acceleration m/s2

t:

Time s

v:

Air velocity m/s

p:

Pressure Pa

Su:

Source items N/m3∙s

Sw:

Source items kg/m3∙s

Sh:

Source items J/m3∙s

W:

Moisture content % d.b.

Hw:

Heat transfers of betel nut kJ

k:

Drying constant

hs:

Latent heat of vaporization of water kJ/kg

hv:

Latent heat of vaporization of free water kJ/kg

MRD:

Mean Relative Deviation

AEP:

Average Error of Prediction

PEC:

Performance evaluation criteria

DPEC:

Drying performance evaluation criteria

Mu:

Moisture uniformity

ρa:

Air density kg∙m-3

ρb:

Betel nut density kg∙m-3

ε:

Porosity

1/α:

Viscous resistance

τ:

Fluid viscous stress

µ:

Air dynamic viscosity

Φ:

Moisture content or air velocity

0:

Feedstock in initial state

References

  1. Canabarro NI, Mazutti MA, Ferreira MD (2019) Drying of olive (Olea europaea L.) leaves on a conveyor belt for supercritical extraction of bioactive compounds: Mathematical modeling of drying/extraction operations and analysis of extracts. Ind Crop Prod 136:140–151. https://doi.org/10.1016/j.indcrop.2019.05.004

    Article  Google Scholar 

  2. Li HN, Chen Q, Zhang XH, Finney KN, Sharifi VN, Swithenbank J (2012) Evaluation of a biomass drying process using waste heat from process industries: A case study. Appl Therm Eng 35:71–80. https://doi.org/10.1016/j.applthermaleng.2011.10.009

    Article  Google Scholar 

  3. Alamia A, Strom H, Thunman H (2015) Design of an integrated dryer and conveyor belt for woody biofuels. Biomass Bioenerg 77:92–109. https://doi.org/10.1016/j.biombioe.2015.03.022

    Article  Google Scholar 

  4. Zanoelo EF, Abitante A, Meleiro LAC (2008) Dynamic modeling and feedback control for conveyors-belt dryers of mate leaves. J Food Eng 84(3):458–468. https://doi.org/10.1016/j.jfoodeng.2007.06.008

    Article  Google Scholar 

  5. Hosseinizand H, Lim CJ, Webb E, Sokhansanj S (2017) Economic analysis of drying microalgae Chlorella in a conveyor belt dryer with recycled heat from a power plant. Appl Therm Eng 124:525–532. https://doi.org/10.1016/j.applthermaleng.2017.06.047

    Article  Google Scholar 

  6. Bohner M, Barfuss I, Heindl A, Muller J (2013) Improving the airflow distribution in a multi-belt conveyor dryer for spice plants by modifications based on computational fluid dynamics. Biosyst Eng 115(3):339–345. https://doi.org/10.1016/j.biosystemseng.2013.03.012

    Article  Google Scholar 

  7. He DJ, Pang YS, Lodewijks G (2017) Green operations of belt conveyors by means of speed control. Appl Energ 188:330–341. https://doi.org/10.1016/j.apenergy.2016.12.017

    Article  Google Scholar 

  8. Sangtarash F, Shokuhmand H (2015) Experimental and numerical investigation of the heat transfer augmentation and pressure drop in simple, dimpled and perforated dimpled louver fin banks with an in-line or staggered arrangement. Appl Therm Eng 82:194–205. https://doi.org/10.1016/j.applthermaleng.2015.02.073

    Article  Google Scholar 

  9. Afshari E, Houreh NB (2014) Numerical predictions of performance of the proton exchange membrane fuel cell with baffle(s)-blocked flow field designs. Int J Mod Phys B 28 (16). https://doi.org/10.1142/S0217979214500970

  10. Houreh NB, Shokouhmand H, Afshari E (2019) Effect of inserting obstacles in flow field on a membrane humidifier performance for PEMFC application: A CFD model. Int J Hydrogen Energ 44(57):30420–30439. https://doi.org/10.1016/j.ijhydene.2019.09.189

    Article  Google Scholar 

  11. Zhang H, Deng SX (2017) Numerical simulation of moisture-heat coupling in belt dryer and structure optimization. Appl Therm Eng 127:292–301. https://doi.org/10.1016/j.applthermaleng.2017.08.071

    Article  Google Scholar 

  12. Rezk K, Forsberg J (2011) Geometry development of the internal duct system of a heat pump tumble dryer based on fluid mechanic parameters from a CFD software. Appl Energ 88(5):1596–1605. https://doi.org/10.1016/j.apenergy.2010.10.047

    Article  Google Scholar 

  13. Jamaleddine TJ, Ray MB (2010) Application of Computational Fluid Dynamics for Simulation of Drying Processes: A Review. Dry Technol 28(2):120–154. https://doi.org/10.1080/07373930903517458

    Article  Google Scholar 

  14. ElGamal R, Ronsse F, Radwan SM, Pieters JG (2014) Coupling CFD and Diffusion Models for Analyzing the Convective Drying Behavior of a Single Rice Kernel. Dry Technol 32(3):311–320. https://doi.org/10.1080/07373937.2013.829088

    Article  Google Scholar 

  15. Srikiatden J, Roberts JS (2008) Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. J Food Eng 84(4):516–525. https://doi.org/10.1016/j.jfoodeng.2007.06.009

    Article  Google Scholar 

  16. Akkus Y, Tannan HI, Cetin B, Dursunkaya Z (2017) Two-dimensional computational modeling of thin film evaporation. Int J Therm Sci 121:237–248. https://doi.org/10.1016/j.ijthermalsci.2017.07.013

    Article  Google Scholar 

  17. Cascetta M, Cau G, Puddu P, Serra F (2016) A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system. Appl Therm Eng 98:1263–1272. https://doi.org/10.1016/j.applthermaleng.2016.01.019

    Article  Google Scholar 

  18. Milosevic H, Geydarov NA, Zakharov YN, Stevovic S (2013) Model of incompressible viscous fluid flow driven by pressure difference in a given channel. Int J Heat Mass Tran 62:242–246. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.059

    Article  Google Scholar 

  19. Modak A, Zuo H, Takagaki SS, Ramaswamy S (2011) The Role of Nonuniformity in Convective Heat and Mass Transfer through Porous Media, Part 1. Dry Technol 29(5):536–542. https://doi.org/10.1080/07373937.2010.513781

    Article  Google Scholar 

  20. Hemis M, Singh CB, Jayas DS, Bettahar A (2011) Simulation of Coupled Heat and Mass Transfer in Granular Porous Media: Application to the Drying of Wheat. Dry Technol 29(11):1267–1272. https://doi.org/10.1080/07373937.2011.591712

    Article  Google Scholar 

  21. Zhang HR, Pera LS, Zhao YJ, Sanchez CV (2015) Researches and applications on geostatistical simulation and laboratory modeling of mine ventilation network and gas drainage zone. Process Saf Environ 94:55–64. https://doi.org/10.1016/j.psep.2014.10.003

    Article  Google Scholar 

  22. Malekjani N, Jafari SM (2018) Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends Food Sci Tech 78:206–223. https://doi.org/10.1016/j.tifs.2018.06.006

    Article  Google Scholar 

  23. Cârlescu P-M, Arsenoaia V, Roşca R, ţenu I, (2017) CFD simulation of heat and mass transfer during apricots drying. LWT Food Sci Technol 85:479–486. https://doi.org/10.1016/j.lwt.2017.03.015

    Article  Google Scholar 

  24. Hsu WL, Paul S, Shamim JA, Kitaoka K, Daiguji H (2018) Design and performance evaluation of a multilayer fixed-bed binder-free desiccant dehumidifier for hybrid air-conditioning systems: Part II - Theoretical analysis. Int J Heat Mass Tran 116:1370–1378. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.080

    Article  Google Scholar 

  25. Thorpe GR (2008) The application of computational fluid dynamics codes to simulate heat and moisture transfer in stored grains. J Stored Prod Res 44(1):21–31. https://doi.org/10.1016/j.jspr.2007.07.001

    Article  Google Scholar 

  26. Yusriah L, Sapuan SM, Zainudin ES, Mariatti M (2012) Exploring the Potential of Betel Nut Husk Fiber as Reinforcement in Polymer Composites: Effect of Fiber Maturity. Procedia Chem 4:87–94. https://doi.org/10.1016/j.proche.2012.06.013

    Article  Google Scholar 

  27. Yusriah L, Sapuan SM, Zainudin ES, Mariatti M (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Clean Prod 72:174–180. https://doi.org/10.1016/j.jclepro.2014.02.025

    Article  Google Scholar 

  28. Al-Hashemi HMB, Al-Amoudi OSB (2018) A review on the angle of repose of granular materials. Powder Technol 330:397–417. https://doi.org/10.1016/j.powtec.2018.02.003

    Article  Google Scholar 

  29. Gravalos I, Georgiadis A, Kateris D, Gialamas T, Bompolas E, Tsiropoulos Z, Avgoustis A, Xyradakis P (2017) An experimental simulation of moisture distribution and its uniformity within the soil profile under laboratory conditions. Precis Agric 18(1):19–36. https://doi.org/10.1007/s11119-016-9459-4

    Article  Google Scholar 

  30. Liu XY, Li C, Cao XX, Yan CQ, Ding M (2018) Numerical analysis on enhanced performance of new coaxial cross twisted tapes for laminar convective heat transfer. Int J Heat Mass Tran 121:1125–1136. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.052

    Article  Google Scholar 

  31. Xu ZM, Han ZM, Wang JT, Liu ZD (2018) The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators. Int J Heat Mass Tran 116:61–72. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.083

    Article  Google Scholar 

Download references

Funding

This work was supported by the [2019 Key Projects of Social Science and Technology Development of Dongguan] under grant [2019507140211]; [Scientific Research Youth Team of Dongguan University of Technology] under grant [TDQN2019006]; [Guangdong Innovation Research Team for Higher Education] under grant [2017KCXTD030]; [Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes] under grant [2016GCZX009]; [High-level Talents Project of Dongguan University of Technology] under grant [KCYKYQD2017017]; [Guangdong Provincial Key Laboratory of Distributed Energy Systems] under grant [2020B1212060075].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hang Zhang; Methodology: Hang Zhang, Bo Pang; Formal analysis and investigation: Hang Zhang, Bo Pang; Writing—original draft preparation: Hang Zhang; Writing—review and editing: Shimin Kang, Jinxia Fu, Peifeng Tang; Funding acquisition: Shimin Kang; Resources: Shengxiang Deng; Supervision: Shengxiang Deng, Jie Chang, Shimin Kang.

Corresponding author

Correspondence to Shimin Kang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Pang, B., Kang, S. et al. The influence of feedstock stacking shape on the drying performance of conveyor belt dryer. Heat Mass Transfer 58, 157–170 (2022). https://doi.org/10.1007/s00231-021-03098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03098-7

Navigation