Skip to main content
Log in

The insight flow characteristics of concentrated MWCNT in water base fluid: experimental study and ANN modelling

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

CNT based nanofluids have great potential in the field of heat transfer due to their higher thermal conductivity compared to other categories of nanofluids. However, their applicability to different flow conditions is unknown. The flow behaviour of MWCNT/water nanofluids was investigated in this study under a variety of conditions, including concentration, temperature, and shear stress (0–35 Pa). Non-Newtonian flow properties of prepared samples have been found by experiments. MWCNT/Water nanofluids have shown that flow behaviour is strongly influenced by concentration. This contrasting rheological activity of MWCNT/water nanofluid at various concentrations was also attributed to SDS surfactant. The concept of molecular association of MWCNT and SDS molecules over the various structures formed by MWCNT at different concentrations and shear conditions is used to describe the insight flow characteristics of MWCNT. Power-law model-based curve fitting was used to study the variations in flow behaviour of MWCNT/water nanofluid. On the basis of qualitative results, this model was found to be the best-fitting model. Furthermore, an optimal Artificial Neural Network (ANN) was used to predict the complex viscosity of MWCNT/water nanofluid over flow behaviour variation, which is difficult to predict using traditional models. The influence of different parameters such as the weight percent concentration of nanofluid, temperature, shear time, and shear stress are all taken into account in this model. The model was trained on a dataset from current research and demonstrated outstanding accuracy in predicting viscosity (for the testing data, obtained R2 and RMSE are 0.9993 and 0.0035).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

n :

Flow behavior index

k :

Consistency index (Pa sn)

T :

Temperature (℃)

m :

Mass (kg)

d :

The diameter of the particle (nm)

N :

Nodes

b :

Bias

h :

Interparticle spacing

C :

Correlation factor

δ :

The distance between the center of the particle

Φ :

Volumetric concentration

σ :

Shear stress (Pa)

γ :

Shear rate (s-1)

λ :

Mean free path of the fluid (m)

τ p :

Relaxation time

μ :

Dinamic viscosity[Pa.s]

ρ :

Density of air[kg/m3]

f :

Base fluid

ρ :

Density of air[kg/m3]

nf :

Nano fluid

p :

Particles

W :

Water

wt :

Weight

vol :

Volumetric

r :

Number of dataset

exp :

Experimental value

pred :

Predicted value

References

  1. Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

    Article  Google Scholar 

  2. Yadav D, Upadhyay Z, Kushwaha A, Mishra A (2020) Analysis over trio-tube with dual thermal communication surface heat exchanger [T.T.H.Xr.]. In: Recent Trends in Mechanical Engineering pp 1–13

  3. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13:474–480. https://doi.org/10.2514/2.6486

    Article  Google Scholar 

  4. Sommers AD, Yerkes KL (2010) Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J Nanopart Res 12:1003–1014. https://doi.org/10.1007/s11051-009-9657-3

    Article  Google Scholar 

  5. Esfe MH, Esfandeh S (2020) The statistical investigation of multi-grade oil based nanofluids: Enriched by MWCNT and ZnO nanoparticles. Phys A 554:122159. https://doi.org/10.1016/j.physa.2019.122159

    Article  Google Scholar 

  6. Mosavian MTH, Heris SZ, Etemad SG, Esfahany MN (2010) Heat transfer enhancement by application of nano-powder. J Nanopart Res 12:2611–2619. https://doi.org/10.1007/s11051-009-9840-6

    Article  Google Scholar 

  7. Choi SUS, Zhang ZG, Yu W (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett https://doi.org/10.1063/1.1408272

    Google Scholar 

  8. de Heer WA, Ch telain A, Ugarte D (1995) A Carbon Nanotube Field-Emission Electron Source. Science 270:1179–1180. https://doi.org/10.1126/science.270.5239.1179

    Article  Google Scholar 

  9. Kong J, Javey A (2009) Carbon Nanotube Electronics. Springer, US, Boston, MA

    Book  Google Scholar 

  10. Kaushik BK, Majumder MK (2015) Carbon nanotube: Properties and Applications pp 17–37

  11. Zhang J, Gao L (2007) Dispersion of multiwall carbon nanotubes by sodium dodecyl sulfate for preparation of modified electrodes toward detecting hydrogen peroxide. Mater Lett 61:3571–3574. https://doi.org/10.1016/j.matlet.2006.11.138

    Article  Google Scholar 

  12. Khan MI, Shah F, Hayat T, Alsaedi A (2019) Transportation of CNTs based nanomaterial flow confined between two coaxially rotating disks with entropy generation. Phys A 527:121154. https://doi.org/10.1016/j.physa.2019.121154

    Article  MathSciNet  Google Scholar 

  13. Patel HE, Anoop KB, Sundararajan T, Das SK (2008) Model for thermal conductivity of CNT-nanofluids. Bull Mater Sci 31:387–390. https://doi.org/10.1007/s12034-008-0060-y

    Article  Google Scholar 

  14. Yang L, Ji W, Huang J nan, Xu G (2019) An updated review on the influential parameters on thermal conductivity of nano-fluids. J Mol Liq 296

  15. Rehman WU, Merican ZMA, Bhat AH (2019) Synthesis, characterization, stability and thermal conductivity of multi-walled carbon nanotubes (MWCNTs) and eco-friendly jatropha seed oil based nanofluid: An experimental investigation and modeling approach. J Mol Liq 293 https://doi.org/10.1016/j.molliq.2019.111534

  16. Sadri R, Ahmadi G, Togun H (2014) An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett 9:151. https://doi.org/10.1186/1556-276X-9-151

    Article  Google Scholar 

  17. Lu G, Duan Y-Y, Wang X-D (2014) Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. J Nanopart Res 16:2564. https://doi.org/10.1007/s11051-014-2564-2

    Article  Google Scholar 

  18. Yadav D, Kumar R, Singh PK (2018) Experimental investigation on rheology property of MWCNT-Al2O3/water hybrid nanofluid. p 020042

  19. Bobbo S, Fedele L, Benetti A (2012) Viscosity of water based SWCNH and TiO2 nanofluids. Exp Thermal Fluid Sci 36:65–71. https://doi.org/10.1016/j.expthermflusci.2011.08.004

    Article  Google Scholar 

  20. Sen S, Moazzen E, Aryal S (2015) Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ-Fe2O3 nanoparticles. J Nanopart Res 17:437. https://doi.org/10.1007/s11051-015-3242-8

    Article  Google Scholar 

  21. Garbadeen ID, Sharifpur M, Slabber JM, Meyer JP (2017) Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int Commun Heat Mass Transfer 88:1–8. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.019

    Article  Google Scholar 

  22. Estellé P, Halelfadl S, Maré T (2015) Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Engineering 1:381. https://doi.org/10.18186/jte.92293

  23. Hojjat M, Etemad SG, Bagheri R, Thibault J (2011) Rheological characteristics of non-Newtonian nanofluids: Experimental investigation. Int Commun Heat Mass Transfer 38:144–148. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019

    Article  MATH  Google Scholar 

  24. Talebizadehsardari P, Shahsavar A, Toghraie D, Barnoon P (2019) An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field. Phys A 534:122129. https://doi.org/10.1016/j.physa.2019.122129

    Article  Google Scholar 

  25. Hung YH, Chou WC (2012) Chitosan for Suspension Performance and Viscosity of MWCNTs. International Journal of Chemical Engineering and Applications 347–353. https://doi.org/10.7763/IJCEA.2012.V3.215

  26. Esfe MH, Rostamian H, Afrand M, Wongwises S (2016) Examination of effects of multi-walled carbon nanotubes on rheological behavior of engine oil (10W40). J Nanostruct. https://doi.org/10.22052/jns.2016.41620

  27. Allaoui A, Bounia N (2010) Rheological and Electrical Transitions in Carbon Nanotube/Epoxy Suspensions. Curr Nanosci 6:158–162. https://doi.org/10.2174/157341310790945669

    Article  Google Scholar 

  28. Dalkilic ASS, Küçükyıldırım BOO, Akdogan Eker A (2017) Experimental investigation on the viscosity of Water-CNT and Antifreeze-CNT nanofluids. Int Commun Heat Mass Transfer 80:47–59. https://doi.org/10.1016/j.icheatmasstransfer.2016.11.011

    Article  Google Scholar 

  29. Einstein A (1956) Investigations O N the Theory .of ,the Brownian Movement R. F Ü R T H Translated By. Dover, New York

  30. Brinkman HC (1952) The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys 20:571–571. https://doi.org/10.1063/1.1700493

    Article  Google Scholar 

  31. Frankel NA, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 22:847–853. https://doi.org/10.1016/0009-2509(67)80149-0

    Article  Google Scholar 

  32. Lundgren TS (1972) Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech 51:273–299. https://doi.org/10.1017/S002211207200120X

    Article  MATH  Google Scholar 

  33. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117. https://doi.org/10.1017/S0022112077001062

    Article  MathSciNet  Google Scholar 

  34. Krieger IM, Dougherty TJ (1959) A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans Soc Rheol 3:137–152. https://doi.org/10.1122/1.548848

    Article  MATH  Google Scholar 

  35. Eilers H (1941) Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid-Zeitschrift 97:313–321. https://doi.org/10.1007/BF01503023

    Article  Google Scholar 

  36. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett https://doi.org/10.1063/1.107080

    Google Scholar 

  37. Vand V (1948) Viscosity of Solutions and Suspensions. I. Theory. J Phys Colloid Chem 52:277–299. https://doi.org/10.1021/j150458a001

    Article  Google Scholar 

  38. Tseng WJ, Lin K-C (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng, A 355:186–192. https://doi.org/10.1016/S0921-5093(03)00063-7

    Article  Google Scholar 

  39. Namburu PK, Kulkarni DP, Misra D, Das DK (2007) Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Thermal Fluid Sci 32:397–402. https://doi.org/10.1016/j.expthermflusci.2007.05.001

    Article  Google Scholar 

  40. Graham AL (1981) On the viscosity of suspensions of solid spheres. Appl Sci Res 37:275–286. https://doi.org/10.1007/BF00951252

    Article  MATH  Google Scholar 

  41. Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42:055501. https://doi.org/10.1088/0022-3727/42/5/055501

    Article  Google Scholar 

  42. Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage 52:789–793. https://doi.org/10.1016/j.enconman.2010.06.072

    Article  Google Scholar 

  43. Rostamian SH, Biglari M, Saedodin S, Hemmat Esfe M (2017) An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq 231:364–369. https://doi.org/10.1016/j.molliq.2017.02.015

    Article  Google Scholar 

  44. Esfe MH, Naderi A, Akbari M (2015) Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim 121:1273–1278. https://doi.org/10.1007/s10973-015-4565-5

    Article  Google Scholar 

  45. Eshgarf H, Sina N, Esfe MH (2018) Prediction of rheological behavior of MWCNTs–SiO2/EG–water non-Newtonian hybrid nanofluid by designing new correlations and optimal artificial neural networks. J Therm Anal Calorim 132:1029–1038. https://doi.org/10.1007/s10973-017-6895-y

    Article  Google Scholar 

  46. Yadav D, Naruka DS, Singh PK (2020) Employing ANN model for prediction of thermal conductivity of cnt nanofluids. In: 2020 International Conference on Contemporary Computing and Applications (IC3A). IEEE, pp 163–168

  47. Esfe MH, Rostamian SH (2020) Rheological behavior characteristics of MWCNT-TiO2/EG (40%–60%) hybrid nanofluid affected by temperature, concentration, and shear rate: An experimental and statistical study and a neural network simulating. Phys A 553:124061. https://doi.org/10.1016/j.physa.2019.124061

    Article  Google Scholar 

  48. Yadav D, Dansena P, Ghosh SK, Singh PK (2020) A unique multilayer perceptron model (ANN) for different oxide/EG nanofluid’s viscosity from the experimental study. Phys A 549:124030. https://doi.org/10.1016/j.physa.2019.124030

    Article  Google Scholar 

  49. Esfe MH, Reiszadeh M, Esfandeh S, Afrand M (2018) Optimization of MWCNTs (10%) – Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network. Phys A 512:731–744. https://doi.org/10.1016/j.physa.2018.07.040

    Article  Google Scholar 

  50. Wu H, Al-Rashed AAAA, Barzinjy AA (2019) Curve-fitting on experimental thermal conductivity of motor oil under influence of hybrid nano additives containing multi-walled carbon nanotubes and zinc oxide Physica A 535 https://doi.org/10.1016/j.physa.2019.122128

  51. Esfe MH, Afrand M (2020) Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes. Phys A 540:120766. https://doi.org/10.1016/j.physa.2019.04.002

    Article  Google Scholar 

  52. Esfe MH, Saedodin S, Mahian O, Wongwises S (2014) Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transfer 58:176–183. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.037

    Article  Google Scholar 

  53. Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Physica 4:1058–1072. https://doi.org/10.1016/S0031-8914(37)80203-7

    Article  Google Scholar 

  54. Duan WH, Wang Q, Collins F (2011) Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective. Chem Sci 2:1407–1413. https://doi.org/10.1039/c0sc00616e

    Article  Google Scholar 

  55. Waele O-D (1923) Viscometry and Plastometry. Journal of the Oil & Colour Chemists Association 6:33–69

    Google Scholar 

  56. Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AIChE J 36:321–332. https://doi.org/10.1002/aic.690360302

    Article  Google Scholar 

  57. Naiya TK, Kumar R, Mohapatra S, Mandal A (2014) Studies on the Effect of Surfactants on Rheology of Synthetic Crude. Journal of Petroleum Science Research 3:90. https://doi.org/10.14355/jpsr.2014.0302.06

  58. Malkin AY, Isayev AI (2011) Rheology: Concepts, methods, and applications: Second edition

  59. Hemmat Esfe M, Abbasian Arani AA, Madadi MR, Alirezaie A (2018) A study on rheological characteristics of hybrid nano-lubricants containing MWCNT-TiO2 nanoparticles. J Mol Liq 260:229–236. https://doi.org/10.1016/j.molliq.2018.01.101

    Article  Google Scholar 

  60. Mishra PC, Mukherjee S, Nayak SK, Panda A (2014) A brief review on viscosity of nanofluids. International Nano Letters 4:109–120. https://doi.org/10.1007/s40089-014-0126-3

    Article  Google Scholar 

  61. Meyer JP, Adio SA, Sharifpur M, Nwosu PN (2016) The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models. Heat Transfer Eng 37:387–421. https://doi.org/10.1080/01457632.2015.1057447

    Article  Google Scholar 

  62. Garg P, Alvarado JL, Marsh C (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52:5090–5101. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029

    Article  Google Scholar 

  63. Phuoc TX, Massoudi M, Chen R-H (2011) Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci 50:12–18. https://doi.org/10.1016/j.ijthermalsci.2010.09.008

    Article  Google Scholar 

  64. Li F-C, Yang J-C, Zhou W-W (2013) Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes. Thermochim Acta 556:47–53. https://doi.org/10.1016/j.tca.2013.01.023

    Article  Google Scholar 

  65. Yu L, Bian Y, Liu Y, Xu X (2019) Experimental investigation on rheological properties of water based nanofluids with low MWCNT concentrations. Int J Heat Mass Transf 135:175–185. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.120

    Article  Google Scholar 

  66. Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55:1529–1535. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.004

    Article  Google Scholar 

  67. Gu B, Hou B, Lu Z (2013) Thermal conductivity of nanofluids containing high aspect ratio fillers. Int J Heat Mass Transf 64:108–114. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.080

    Article  Google Scholar 

  68. Almanassra IW, Manasrah AD, Al-Mubaiyedh UA (2020) An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. J Mol Liq 304:111025. https://doi.org/10.1016/j.molliq.2019.111025

    Article  Google Scholar 

  69. Glory J, Bonetti M, Helezen M (2008) Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys 103. https://doi.org/10.1063/1.2908229

Download references

Acknowledgment

The authors gratefully acknowledge the CRF facility of IIT (ISM) Dhanbad for providing the research facility and support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Naruka, D.S. & Singh, P.K. The insight flow characteristics of concentrated MWCNT in water base fluid: experimental study and ANN modelling. Heat Mass Transfer 57, 1829–1844 (2021). https://doi.org/10.1007/s00231-021-03086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03086-x

Navigation