Skip to main content

Advertisement

Log in

Investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a shell-and-tube heat exchanger with longitudinal fins

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Latent heat storage units are considered as an effective solution for the mismatch problem between energy consumption and energy supply when utilizing solar energy. However, the low thermal conductivity of the current phase change materials (PCMs) is regarded as their main drawback. The present study used dispersing nanoparticles in PCM and installing longitudinal fins on the inner tube simultaneously to enhance the melting rate of PCM in a horizontal shell-and-tube heat exchanger. Different compositions of stearic acid (SA) and titanium dioxide TiO2-NPs were employed as nano-encapsulated PCMs as well. The results demonstrated that installing fins have a significant effect on the melting rate of PCM and can improve the melting rate by 68%. Although adding 0.39 wt% TiO2-NPs to PCM enhanced its thermal conductivity of SA by 7 and 15% in liquid and solid phases, respectively, its effect on improving the melting rate of PCM was less than 4%, which is related to the weakening of the natural convection flows because of the increased viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

T :

temperature (°C or K)

f :

liquid fraction

L :

latent heat of PCM (J/kg)

S H :

source term in energy equation

S v :

source term in momentum equation

H :

total enthalpy (J/kg)

h :

heat transfer coefficient or enthalpy (W/m2·K or J/kg)

k :

thermal conductivity of PCM (W/m °C)

t :

time (s or min)

C p :

specific heat at constant pressure (J/kg °C)

l :

length of heat exchanger (m)

r :

radius of inner tube (m)

∀:

total volume of PCM container (m3)

A :

heat transfer surface (m2)

D h :

hydraulic diameter (m)

V :

velocity (m/s)

H h :

hypothetical height of the liquid on the inner tube (m)

P :

pressure (Pa)

g :

gravitational acceleration (m/s2)

A mushy :

mushy zone constant (kg/m3·s)

\( \overline{h} \) :

surface-averaged heat transfer coefficient (W/m2·K)

\( \overline{Nu} \) :

surface-averaged Nusselt number

M :

mass (kg)

x :

characteristic length (m)

Q :

absorbed thermal energy by PCM (j)

Δt :

time step (s)

\( \overline{\dot{Q}} \) :

surface-averaged heat transfer rate (w)

\( \left\langle \overline{\dot{Q}}\right\rangle \) :

time-averaged heat transfer rate (w)

\( \left\langle \overline{Nu}\right\rangle \) :

time -averaged Nusselt number

Fo :

Fourier number \( \alpha t/{D}_h^2 \)

Ra x :

Rayleigh number (THTF − Tm)x3/να

Ste :

Stefan number Cp, l(THTF − Tm)/L

Nu :

Nusselt number hDh/kl

AR :

heat transfer surface Ratio A/Ab

MR :

mass fraction of nanoparticles MNP/MPCM

ρ :

density of PCM (kg/m3)

μ :

dynamic viscosity of PCM (kg/m s)

α :

thermal diffusivity (m2/s)

ε :

overall effectiveness

η :

numerical constant

β :

volumetric expansion coefficient (1/K)

ϕ :

particle volume fraction

l :

liquid phase

0:

references

m :

melting point

solidus :

solidus of the phase change

liquidus :

liquidus of the phase change

b :

base state

t :

total

NP :

nanoparticles

PCM :

phase change materials

HTF :

heat transfer fluid

NePCM :

nanoparticles enhanced phase change materials

References

  1. Rozanna D, Chuah TG, Salmiah A, Choong TSY, Sa’ari M (2005) Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy 1:495–513. https://doi.org/10.1081/GE-200038722

    Article  Google Scholar 

  2. Yuan Y, Zhang N, Tao W, Cao X, He Y (2014) Fatty acids as phase change materials: a review. Renew Sust Energ Rev 29:482–498. https://doi.org/10.1016/j.rser.2013.08.107

    Article  Google Scholar 

  3. Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283. https://doi.org/10.1016/S1359-4311(02)00192-8

    Article  Google Scholar 

  4. Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT (2013) Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Appl Therm Eng 53:147–156. https://doi.org/10.1016/j.applthermaleng.2013.01.011

    Article  Google Scholar 

  5. A. Pizzolato, A. Sharma, K. Maute, A. Sciacovelli, V. Verda (2017) Design of e ffective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization, Appl Energy 1–18. doi:https://doi.org/10.1016/j.apenergy.2017.10.050

  6. Jamekhorshid A, Sadrameli SM, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sust Energ Rev 31:531–542. https://doi.org/10.1016/j.rser.2013.12.033

    Article  Google Scholar 

  7. Salunkhe PB, Shembekar PS (2012) A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sust Energ Rev 16:5603–5616. https://doi.org/10.1016/j.rser.2012.05.037

    Article  Google Scholar 

  8. MacPhee D, Dincer I (2009) Thermal modeling of a packed bed thermal energy storage system during charging. Appl Therm Eng 29:695–705. https://doi.org/10.1016/j.applthermaleng.2008.03.041

    Article  Google Scholar 

  9. Wu M, Xu C, He YL (2014) Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules. Appl Energy 121:184–195. https://doi.org/10.1016/j.apenergy.2014.01.085

    Article  Google Scholar 

  10. Abdollahzadeh M, Esmaeilpour M (2015) Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface. Int J Heat Mass Transf 80:376–385. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.007

    Article  Google Scholar 

  11. Canseco V, Anguy Y, Josep J, Palomo E (2014) Structural and mechanical characterization of graphite foam / phase change material composites. Carbon N Y 74:266–281. https://doi.org/10.1016/j.carbon.2014.03.031

    Article  Google Scholar 

  12. Zhou D, Zhao CY (2011) Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng 31:970–977. https://doi.org/10.1016/j.applthermaleng.2010.11.022

    Article  Google Scholar 

  13. Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K (1999) Heat transfer enhancement in a latent heat storage system. Sol Energy 65:171–180. https://doi.org/10.1016/S0038-092X(98)00128-5

    Article  Google Scholar 

  14. Zhang P, Meng ZN, Zhu H, Wang YL, Peng SP (2015) Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam q. Appl Energy. https://doi.org/10.1016/j.apenergy.2015.10.075

  15. Frusteri F, Leonardi V, Vasta S, Restuccia G (2005) TC measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng 25:1623–1633. https://doi.org/10.1016/j.applthermaleng.2004.10.007

    Article  Google Scholar 

  16. Fukai J, Hamada Y, Morozumi Y, Miyatake O (2002) Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int J Heat Mass Transf 45:4781–4792. https://doi.org/10.1016/S0017-9310(02)00179-5

    Article  Google Scholar 

  17. Ranjbar S, Masoumi H, Haghighi Khoshkho R, Mojtaba K (2019) Experimental investigation of stability and TC of phase change materials containing pristine and functionalized multi - walled carbon nanotubes. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-09005-x

  18. Leong KY, Rosdzimin M, Rahman A, Gurunathan BA (2019) Nano-enhanced phase change materials : a review of thermo-physical properties, applications and challenges. J Energy Storage 21:18–31. https://doi.org/10.1016/j.est.2018.11.008

    Article  Google Scholar 

  19. Khodadadi JM, Hosseinizadeh SF (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf 34:534–543. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.005

    Article  Google Scholar 

  20. Dhaidan NS, Khodadadi JM, Al-hattab TA, Al-mashat SM (2013) Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transf 67:455–468. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.002

    Article  Google Scholar 

  21. Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC (2016) Thermal properties and heat storage analysis of palmitic acid-TiO2composite as nano-enhanced organic phase change material (NEOPCM). Appl Therm Eng 99:1254–1260. https://doi.org/10.1016/j.applthermaleng.2016.01.130

    Article  Google Scholar 

  22. Sami S, Etesami N (2017) Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2017.06.023

  23. Harikrishnan S, Magesh S, Kalaiselvam S (2013) Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanofluids as a phase change material for solar heating systems. Thermochim Acta 565:137–145. https://doi.org/10.1016/j.tca.2013.05.001

    Article  Google Scholar 

  24. T. Teng, C. Yu (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage 1–10

  25. Babita SK, Sharma SM (2016) Gupta, preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Thermal Fluid Sci 79:202–212. https://doi.org/10.1016/j.expthermflusci.2016.06.029

    Article  Google Scholar 

  26. E.B. Haghighi, N. Nikkam, M. Saleemi, M. Behi, S.A. Mirmohammadi, H. Poth, R. Khodabandeh, M.S. Toprak, M. Muhammed, B. Palm (2013) Shelf stability of nanofluids and its effect on thermal conductivity and viscosity, Meas. Sci. Technol. 24. doi:https://doi.org/10.1088/0957-0233/24/10/105301

  27. Hosseini MJ, Ranjbar AA, Rahimi M, Bahrampoury R (2015) Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems. Energy Build. https://doi.org/10.1016/j.enbuild.2015.04.045

  28. Rabienataj Darzi AA, Jourabian M, Farhadi M (2016) Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus. Energy Convers Manag 118:253–263. https://doi.org/10.1016/j.enconman.2016.04.016

    Article  Google Scholar 

  29. Parsazadeh M, Duan X (2017) Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl Therm Eng 111:950–960. https://doi.org/10.1016/j.applthermaleng.2016.09.133

    Article  Google Scholar 

  30. Ranjbar S, Masoumi H, Haghighi Khoshkho R, Mirfendereski SM (2019) Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes. J Ther Anal Calorim. https://doi.org/10.1007/s10973-019-09005

  31. Masoumi H, Haghighi Khoshkho R, Mirfendereski SM (2019) Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO2-nanoparticles. Thermochim Acta 675:9–17. https://doi.org/10.1016/j.tca.2019.02.015

    Article  Google Scholar 

  32. Seddegh S, Wang X, Henderson AD (2016) A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng 93:348–358. https://doi.org/10.1016/j.applthermaleng.2015.09.107

    Article  Google Scholar 

  33. Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT (2013) Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf 61:684–695. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.030

    Article  Google Scholar 

  34. Kamkari B, Shokouhmand H (2014) Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int J Heat Mass Transf 78:839–851. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.056

    Article  Google Scholar 

  35. Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S (2015) Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy 137:731–737. https://doi.org/10.1016/j.apenergy.2014.09.028

    Article  Google Scholar 

  36. Jesumathy S, Udayakumar M, Suresh S (2012) Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf Und Stoffuebertragung 48:965–978. https://doi.org/10.1007/s00231-011-0945-y

    Article  Google Scholar 

  37. Şahan N, Fois M, Paksoy H (2015) Improving thermal conductivity phase change materials - a study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells 137:61–67. https://doi.org/10.1016/j.solmat.2015.01.027

    Article  Google Scholar 

  38. Park S, Lee Y, Kim YS, Lee HM, Kim JH, Cheong IW, Koh WG (2014) Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids Surfaces A Physicochem Eng Asp 450:46–51. https://doi.org/10.1016/j.colsurfa.2014.03.005

    Article  Google Scholar 

  39. Harikrishnan S, Deenadhayalan M, Kalaiselvam S (2014) Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers Manag 86:864–872. https://doi.org/10.1016/j.enconman.2014.06.042

    Article  Google Scholar 

  40. Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M (2014) Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2nanoparticles. Int Commun Heat Mass Transf 59:68–74. https://doi.org/10.1016/j.icheatmasstransfer.2014.10.016

    Article  Google Scholar 

  41. Babapoor A, Karimi G (2015) Thermal properties measurement and heat storage analysis of paraffin-nanoparticles composites phase change material: comparison and optimization. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2015.07.083

  42. Wang J, Xie H, Li Y, Xin Z (2010) PW based phase change nanocomposites containing γ-Al 2O3. J Therm Anal Calorim 102:709–713. https://doi.org/10.1007/s10973-010-0850-5

    Article  Google Scholar 

  43. Ho CJ, Gao JY (2009) Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass Transf 36:467–470. https://doi.org/10.1016/j.icheatmasstransfer.2009.01.015

    Article  Google Scholar 

  44. Fan L, Khodadadi JM (2012) An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM). Int J Therm Sci 62:120–126. https://doi.org/10.1016/j.ijthermalsci.2011.11.005

    Article  Google Scholar 

  45. Krishna J, Kishore PS, Solomon AB (2017) Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Thermal Fluid Sci 81:84–92. https://doi.org/10.1016/j.expthermflusci.2016.10.014

    Article  Google Scholar 

  46. Nourani M, Hamdami N, Keramat J, Moheb A, Shahedi M (2016) Thermal behavior of paraffin-nano-Al2O3stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renew Energy 88:474–482. https://doi.org/10.1016/j.renene.2015.11.043

    Article  Google Scholar 

  47. Colla L, Fedele L, Mancin S, Danza L, Manca O (2017) Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng 110:584–589. https://doi.org/10.1016/j.applthermaleng.2016.03.161

    Article  Google Scholar 

  48. H. C. Brinkman (1952) “The Viscosity of Concentrated Suspensions and Solutions,” 571:1–2. https://doi.org/10.1063/1.1700493

  49. Fan L, Zhu Z, Zeng Y, Ding Q, Liu M (2016) Unconstrained melting heat transfer in a spherical container revisited in the presence of nano-enhanced phase change materials (NePCM). Int J Heat Mass Transf 95:1057–1069. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.013

    Article  Google Scholar 

  50. E. Assis, L. Katsman, G. Ziskind, R. Letan (2007) Numerical and experimental study of melting in a spherical shell, 50: 1790–1804. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007

  51. Jones D, Smith F (1970) Optimum arrangement of rectangular fins on horizontal surfaces for free convection heat transfer. J Heat Transf 92:6–10

    Article  Google Scholar 

  52. Wong S, Huang G (2013) International journal of heat and mass transfer parametric study on the dynamic behavior of natural convection from horizontal rectangular fin arrays. Int J Heat Mass Transf 60:334–342. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.019

    Article  Google Scholar 

  53. Kline S, Mcclintock F (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Haghighi Khoshkhoo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Simultaneously are studied effects of fins and nanoparticles on melting of PCM.

• Different composites of TiO2 nanoparticles and stearic acid are studied as NePCM.

• Thermal behavior of a shell-and-tube energy storage system using PCM is studied.

• Effect of increasing the HTF temperature on melting PCM is examined.

• Installing fins is more effective than adding nanoparticles on PCM melting rates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, H., Haghighi Khoshkhoo, R. Investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a shell-and-tube heat exchanger with longitudinal fins. Heat Mass Transfer 57, 681–701 (2021). https://doi.org/10.1007/s00231-020-02983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02983-x

Navigation