Skip to main content
Log in

Experimental study of R600a/oil/MWCNT nano-refrigerant condensing flow inside micro-fin tubes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present experimental study aims to investigate condensation heat transfer characteristics of R600a/oil/multi-walled carbon nanotube (MWCNT) nano-refrigerant flow inside a horizontal micro-fin tube. The test condenser is a horizontal double-pipe heat exchanger consists of a copper micro-fin tube with 14.18 mm inner diameter which is installed in a polyethylene shell with a diameter of 6 cm. The experiments cover a wide range of parameters, including mass velocity of 54 to 90 kg/m2 s, vapor quality of 0.03 to 0.76, and condensation pressure of 550 to 700 kPa. The investigations are conducted in three parts, including the characteristics of pure R600a condensing flow inside micro-fin tubes, the effect of adding lubricating oil with concentration of 1%, and the impact of adding nano-oil with nanoparticles compactness of 0.1, 0.2, and 0.3%. Comparison of the experimental data for the pure refrigerant flow with three well-known correlations shows the maximum deviation of ±20% which validates the test procedure. Based on the results, R600a/oil heat transfer coefficient is higher than pure R600a in low and medium vapor qualities, while at high qualities the pure R600a shows higher coefficient due to the impact of lubricating oil on the condensate liquid film thermal resistance. In addition, adding nanoparticles is more effective at low and medium vapor qualities and high mass velocity. The results showed that using MWCNT nanoparticles with the compactness of 0.3% increases the heat transfer coefficient up to 74.8% in comparison to the pure refrigerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cp :

Specific heat capacity (kJ/kgK)

d:

Tube diameter (m)

G:

Mass velocity (kg/m2s)

h:

Heat transfer coefficient (W/m2K)

i:

Enthalpy (kJ/kg)

k:

Thermal conductivity (W/mK)

L:

Tube length (m)

\( \overset{.}{\mathrm{m}} \) :

Mass flowrate (kg/s)

p:

Pressure (kPa)

\( \overset{.}{Q} \) :

Heat transfer rate (W)

q:

Heat flux (W/m2)

T:

Temperature (K)

W:

Electrical power (W)

x:

Vapor quality (%)

ave:

Average

bub:

Bubble

c:

Condenser

cw:

Cooling Water

f:

Fluid

fg:

Fluid-gas

g:

Gas

h:

Heater

i:

Inner

in:

Inlet

l:

Liquid phase

loc:

Local

m:

Mixture

nf:

Nanofluid

o:

Oil, Outer

out:

Outlet

p:

Nanoparticles

r:

Refrigerant

sat:

Saturated

v:

Vapor phase

w:

Wall

ω:

Oil mass concentration (kg / kg)

μ:

Dynamic viscosity (Pa.s)

ρ:

Density (kg/m3)

φ:

Nanoparticles volumetric concentration (m3/m3)

References

  1. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Int. mech. eng. congress and exhibition, USA

    Google Scholar 

  2. Dewan A, Mahanta P, Raju KS, Kumar PS (2004) Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A, J Power Energy 218(7):509–527

    Article  Google Scholar 

  3. Jiang W, Ding G, Peng H (2008) Measurement and model on thermal conductivities of carbon nanotube nano refrigerants. Int J Therm Sci 48(6):1108–1115

    Article  Google Scholar 

  4. Akhavan-Behabadi MA, Fakoor-Pakdaman M, Ghazvini M (2012) Experimental investigation on the convective heat transfer of nanofluid flow inside vertical helically coiled tubes under uniform wall temperature condition. Int J Heat Mass Transf 39:556–564

    Article  Google Scholar 

  5. Fakoor Pakdaman M, Akhavan-Behabadi MA, Razi P (2012) An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Thermal Fluid Sci 40:103–111

    Article  Google Scholar 

  6. Derakhshan MM, Akhavan-Behabadi MA (2016) Mixed convection of MWCNT–heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow. Int J Therm Sci 99:1–8

    Article  Google Scholar 

  7. Derakhshan MM, Akhavan-Behabadi MA, Mohseni SG (2015) Experiments on mixed convection heat transfer and performance evaluation of MWCNT-oil Nanofluid flow in horizontal and vertical microfin tubes. Exp Thermal Fluid Sci 61:241–248

    Article  Google Scholar 

  8. Ashtiani D, Akhavan-Behabadi MA, Fakoor-Pakdaman M (2012) An experimental investigation on heat transfer characteristics of multi-walled CNT-heat transfer oil nanofluid flow inside flattened tubes under uniform wall temperature condition. Int J Heat Mass Transf 39(9):1404–1409

    Article  Google Scholar 

  9. Karami M, Akhavan-Behabadi MA, Fakoor-Pakdaman M (2016) Heat transfer and pressure drop characteristics of nanofluid flows inside corrugated tubes. Heat Transfer Eng 37(1):106–114

    Article  Google Scholar 

  10. Zhang SY, Ge Z, Wang HT, Wang H (2016) Characteristics of flow boiling heat transfer and pressure drop of MWCNT-R123 nano refrigerant: experimental investigations and correlations. Microscale Thermophys Eng 20(2):97–120

    Article  Google Scholar 

  11. Yang D, Sun B, Li H, Fan X (2015) Experimental study on the heat transfer and flow characteristics of nano refrigerants inside a corrugated tube. Int J Refrig 56:213–223

    Article  Google Scholar 

  12. Hwang Y, Le JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1-2):70–74

    Article  Google Scholar 

  13. Baqeri S, Akhavan-Behabadi MA, Ghadimi B (2014) Experimental investigation of the forced convective boiling heat transfer of R-600a/oil/nanoparticle. Int Commun Heat Mass Transfer 55:71–76

    Article  Google Scholar 

  14. Akhavan-Behabadi MA, Nasr M, Baqeri S (2014) Experimental investigation of flow boiling heat transfer of R-600a/oil/CuO in a plain horizontal tube. Exp Thermal Fluid Sci 58:105–111

    Article  Google Scholar 

  15. Akhavan-Behabadi MA, Sadoughi MK, Darzi M, Fakoor Pakdaman M (2015) Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation. Exp Thermal Fluid Sci 66:46–52

    Article  Google Scholar 

  16. Ghorbani B, Akhavan-Behabadi MA, Ebrahimi S, Vijayaraghavan K (2017) Experimental investigation of condensation heat transfer of R600a/POE/CuO nano-refrigerant in flattened tubes. Int Commun Heat Mass Transfer 88:236–244

    Article  Google Scholar 

  17. Sheikholeslami M, Darzi M, Sadoughi MK (2018) Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf 122:643–650

    Article  Google Scholar 

  18. Akhavan-Behabadi MA, Kumar R, Mohseni SG (2007) Condensation heat transfer of R-134a inside a microfin tube with different tube inclinations. Int J Heat Mass Transf 50(23-24):4864–4871

    Article  Google Scholar 

  19. Jung D, Cho Y, Park K (2004) Flow condensation heat transfer coefficients of R22, R134a, R407C and R410A inside plain and microfin tubes. Int J Refrig 27(1):25–32

    Article  Google Scholar 

  20. Kim MH, Shin JS (2005) Condensation heat transfer of R22 and R410A in horizontal smooth and microfin tubes. Int J Refrig 28(6):949–957

    Article  Google Scholar 

  21. Li G, Huang L, Tao L (2017) Experimental investigation of refrigerant condensation heat transfer characteristics in the horizontal microfin tubes. Appl Therm Eng 123:1484–1493

    Article  Google Scholar 

  22. Sapali SN, Patil PA (2010) Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube. Exp Thermal Fluid Sci 34:1133–1141

    Article  Google Scholar 

  23. Derakhshan MM, Akhavan-Behabadi MA (2015) An empirical study on fluid properties and pressure drop of nanofluid flow inside inclined smooth and microfin tubes. Int Commun Heat Mass Transfer 65:111–116

    Article  Google Scholar 

  24. Takaishi Y, Oguchi K (1987) Measurements of the vapor pressure of R-22/oil solutions. In: Proc. Int. congress of refrigeration, Vienna, pp 217–222

    Google Scholar 

  25. Thome JR (1995) Comprehensive thermodynamic approach to modeling refrigerant-lubricating oil mixture. Int J HVAC&R Res 1(2):110–125

    Article  Google Scholar 

  26. Schultz R, Cole R (1979) Uncertainty analysis in boiling nucleation. AIChE Symposium Series

  27. Yu J, Koyama S (1998) Condensation heat transfer of pure refrigerants in microfin tubes. In: Proc. int. refrigeration conference, USA, pp 325–330

    Google Scholar 

  28. Cavallini A, Doretti L, Klammsteiner A, Longo LG, Rossetto L (1995) Condensation of new refrigerants inside smooth and enhanced tubes. In: Proc. int. congress of refrigeration, Netherlands, pp 105–114

    Google Scholar 

  29. Kedzierski MA, Goncalves JM (1999) Horizontal convective condensation of alternative refrigerants within a micro-fin tube. J Enhanced Heat Transfer 6(2):161–178

    Article  Google Scholar 

  30. Miyara A (2008) Condensation of hydrocarbons-a review. Int J Refrig 31(4):621–632

    Article  Google Scholar 

  31. Breber G, Palen JW, Taborek J (1980) Prediction of horizontal tube side condensation of pure components using flow regime criteria. J Heat Transf 102(3):471–476

    Article  Google Scholar 

  32. Olivier JA, Liebenberg L, Thome JR, Meyer JP (2007) Heat transfer, pressure drop, and flow pattern recognition during condensation inside smooth, helical micro-fin, and herringbone tubes. Int J Refrig 30(4):609–623

    Article  Google Scholar 

  33. Huang X, Ding G, Hu H, Zhu Y, Gao Y, Deng B (2010) Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes. Exp Thermal Fluid Sci 34(7):845–856

    Article  Google Scholar 

  34. Ahmadpour MM, Akhavan-Behabadi MA, Sajadi B, Salehi-Kohestani A (2019) Effect of lubricating oil on condensation characteristics of R600a inside a horizontal U-shaped tube: experimental study. Int J Therm Sci 145:106007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sajadi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadpour, M.M., Akhavan-Behabadi, M.A., Sajadi, B. et al. Experimental study of R600a/oil/MWCNT nano-refrigerant condensing flow inside micro-fin tubes. Heat Mass Transfer 56, 749–757 (2020). https://doi.org/10.1007/s00231-019-02739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02739-2

Navigation