Skip to main content
Log in

Multi-scale mathematical model of mass transference phenomena inside monolithic carbon aerogels

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A phenomenological basis model was developed to describe behavior of gas adsorption at multi-length scales; from the macroscale (fixed bed scale) to mass transport, into the mesopores and micropores (microscale). The multiscale mass transport model is based on partial differential equations of adsorbate in the gas phase; where an additional adsorption flux on interface was implemented as a boundary condition (BC). Therefore, parallel contributions of kinetic adsorption and diffusive mass transference at BC were considered. The model allows a good fit between experimental and simulated results for fixed bed (FB) concentration profile, height of mass transport, and total adsorption capacity by carbon aerogels, with mesopores to micropores volume relation from 0.3 to 3.4. Both the experimental setup date and multi-scale model identify volume relation (Vmeso/Vmicro) as a key parameter on the design and optimization of adsorption technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Gas concentration, mmol m−3

D :

Diffusion, m2 s−1

Hc :

Henry constant by adsorption

H MTZ :

Height Mass Transfer Zone, cm

K :

Henry adsorption constant, mol/g

k d :

Micropore kinetic adsorption, s−1

K f :

Transfer external constant, cm s−1

Kn :

Knudsen number

J :

Mass flux, mmol m−2 s−1

Nsc:

Schmidt number

Nsh:

Sherwood number

q :

Adsorption capacity, mmol/g-MCA

r :

Radial axis

Rp :

Characteristic monolithic particle radio, Cm

S:

Specific surface area, m2 g−1

T :

Temperature, K

ρ L :

Microparticle density, g cm−3

T :

Time, Min

V :

Volume, cm3

v :

Interstitial velocity, m/s

W 0 :

Total standard micropore volume, cm3 g−1

ϕ :

Fractional capacity

δ :

Boundary layer thickness

σ :

Kinetic diameter

BET:

Brunauer–Emmett–Teller

B:

Bed

ip :

Intraparticle

Meso:

Mesopore

Micro:

Micropore

MTZ:

Mass Transfer Zone

References

  1. Mao Z, Sinnott SB (2000) A computational study of molecular diffusion and dynamic flow through carbon nanotubes. J Phys Chem B 104(19):4618–4624

    Article  Google Scholar 

  2. Kuznetsova A et al (2001) Optimization of Xe adsorption kinetics in single walled carbon nanotubes. J Chem Phys 115(14):6691–6698

    Article  Google Scholar 

  3. Pekala RW et al (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145:90–98

    Article  Google Scholar 

  4. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266

    Article  Google Scholar 

  5. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52(13):3187–3196

    Article  Google Scholar 

  6. Keblinski P et al (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  Google Scholar 

  7. Karger J, Valiullin R (2013) Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. Chem Soc Rev 42(9):4172–4197

    Article  Google Scholar 

  8. Camargo-Trillos D, Chejne F, Pabón E, Carrasco-Marin F (2015) Effect on mass transference phenomena by textural change inside monolithic carbon aerogels. Heat Mass Transf 51(8):1141–1148

    Article  Google Scholar 

  9. Shahtalebi A et al (2014) Slow diffusion of methane in ultra-micropores of silicon carbide-derived carbon. Carbon 77:560–576

    Article  Google Scholar 

  10. Maldonado-Hódar FJ et al (2007) Reversible toluene adsorption on monolithic carbon aerogels. J Hazard Mater 148(3):548–552

    Article  Google Scholar 

  11. Lin C, Ritter JA (2000) Carbonization and activation of sol-gel derived carbon xerogels. Carbon 38(6):849–861

    Article  Google Scholar 

  12. Malek A, Farooq S (1997) Kinetics of hydrocarbon adsorption on activated carbon and silica gel. AICHE J 43(3):761–776

    Article  Google Scholar 

  13. Bonjour J, Chalfen J-B, Meunier F (2002) Temperature swing adsorption process with indirect cooling and heating. Ind Eng Chem Res 41(23):5802–5811

    Article  Google Scholar 

  14. Patton A, Crittenden BD, Perera SP (2004) Use of the linear driving force approximation to guide the Design of Monolithic Adsorbents. Chem Eng Res Des 82(8):999–1009

    Article  Google Scholar 

  15. Brosillon S, Manero M-H, Foussard J-N (2001) Mass transfer in VOC adsorption on zeolite: experimental and theoretical breakthrough curves. Environ Sci Technol 35(17):3571–3575

    Article  Google Scholar 

  16. Khajuria H, Pistikopoulos EN (2011) Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems. J Process Control 21(1):151–163

    Article  Google Scholar 

  17. Akinlabi CO et al. (2007) Modelling, design and optimisation of a hybrid PSA-membrane gas separation process, in Computer Aided Chemical Engineering, P. Valentin and A. Paul Şerban, Editors. Elsevier: 363–370

    Google Scholar 

  18. Wang J et al (2017) Experimental investigation of gas mass transport and diffusion coefficients in porous media with nanopores. Int J Heat Mass Transf 115:566–579

    Article  Google Scholar 

  19. Fletcher AJ, Yüzak Y, Thomas KM (2006) Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44(5):989–1004

    Article  Google Scholar 

  20. Ding LP, Bhatia SK, Liu F (2002) Kinetics of adsorption on activated carbon: application of heterogeneous vacancy solution theory. Chem Eng Sci 57(18):3909–3928

    Article  Google Scholar 

  21. Ding LP et al (2005) Heterogeneous model for gas transport in carbon molecular sieves. Langmuir 21(2):674–681

    Article  Google Scholar 

  22. Shahtalebi A et al (2014) Slow diffusion of methane in ultra-micropores of silicon carbide-derived carbon. Carbon 77(0):560–576

    Article  Google Scholar 

  23. Beers K (2007) Numerical methods for chemical engineering. Cambridge University Press

  24. Vurro M, Castellano L Numerical treatments of the interface discontinuity in solid-water mass transfer problems. Comput Math Applics 45(4–5):785–788

    Article  MathSciNet  Google Scholar 

  25. Illingworth TC, Golosnoy IO (2005) Numerical solutions of diffusion-controlled moving boundary problems which conserve solute. J Comput Phys 209(1):207–225

    Article  Google Scholar 

  26. Fairen Jimenez D (2006) Aerogeles Monolíticos de carbón como adsorbentes para la eliminación de compuestos orgánicos volátiles (BTX). Universidad de Granada, Granda

    Google Scholar 

  27. Neimark AV et al (2009) Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47(7):1617–1628

    Article  Google Scholar 

  28. Gor GY et al (2012) Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50(4):1583–1590

    Article  Google Scholar 

  29. Fairen-Jimenez D, Carrasco-Marin F, Moreno-Castilla C (2007) Adsorption of benzene, toluene, and xylenes on monolithic carbon aerogels from dry air flows. Langmuir 23(20):10095–10101

    Article  Google Scholar 

  30. Kast W, Hohenthanner CR (2000) Mass transfer within the gas-phase of porous media. Int J Heat Mass Transf: 807–823

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful with the COLCIENCIAS (Ph.D. scholarship program number 528 and 617) for providing funding, for the successful completion of this study. Diego Camargo is grateful with CIDI-Universidad Pontifícia Bolivariana for supporting this work. Farid Chejne and Jader Alean wish to thank to the project “Strategy of transformation of the Colombian energy sector in the horizon 2030” funded by the call 788 of Colciencias Scientific Ecosystem. Contract number FP44842-210-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Camargo-Trillos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A multi scale mathematical model which relates external and internal behavior of the monolithic particle.

• Ratio of mesoporous and microporous volumes allows to predict adsorption behavior in fixed bed.

• The mathematical model developed links different scales without considering the instantaneous adsorption hypothesis.

• Border condition includes a singularity based on the adsorption surface.

• This model allows to link mass transport between macro and micro scale in fixed bed of porous particles, that required more knowledge of material surface morphology such as particle porosity, real and apparent density and effective diffusivity into meso and micropores.

• The model also allows to represent the complex effect of mesopores/micropores volume relation of monolithic carbon aerogels on macroscopic adsorption behavior at fixed bed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo-Trillos, D., Chejne, F. & Alean, J. Multi-scale mathematical model of mass transference phenomena inside monolithic carbon aerogels. Heat Mass Transfer 55, 3317–3325 (2019). https://doi.org/10.1007/s00231-019-02654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02654-6

Navigation