Skip to main content
Log in

Thermodynamic properties and water desorption isotherms of Golden Delicious apples

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Moisture desorption isotherms of apples (Golden Delicious) were determined. Experimental desorption data were fitted by 13 mathematical models. The influence of temperature on desorption isotherms was more indicated at high water activities. The GAB, Halsey, Modified Halsey, Oswin, Chen, Ferro Fontan, Lewicki (1998) and Lewicki (2000) models correlated well to the experimental desorption data over the entire field of temperatures and water activities explored. In order to well understand the water properties and to evaluate the energy requirements for transport phenomena during processing, the thermodynamic properties were evaluated from the experimental desorption data. The enthalpy-entropy compensation theory was validated by the variation of net isosteric heat versus differential entropy. This variation provided the isokinetic temperature and the free energy indicating that the desorption process in apple was a non-spontaneous and enthalpy-driven mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aguerre RJ, Suárez C, Viollaz PE (1986) Enthalpy-entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms. J Food Sci 51(6):1547–1549

    Article  Google Scholar 

  2. Ajibola OO, Aviara NA, Ajetumobi OE (2003) Sorption equilibrium and thermodynamic properties of cowpea (Vigna unguiculata). J Food Eng 58(4):317–324

    Article  Google Scholar 

  3. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Moisture sorption isotherm characteristics of food products: a review. Food Bioprod Process 80(2):118–128

    Article  Google Scholar 

  4. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders. Part 2: thermodynamic characteristics. J Food Eng 62(2):135–142

    Article  Google Scholar 

  5. Arslan N, Toǧrul H (2006) The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity. J Stored Prod Res 42(2):112–135

    Article  Google Scholar 

  6. Aviara NA, Ajibola OO (2002) Thermodynamics of moisture sorption in melon seed and cassava. J Food Eng 55(2):107–113

    Article  Google Scholar 

  7. Aviara NA, Ajibola OO, Oni SA (2004) Sorption equilibrium and thermodynamic characteristics of soya bean. Biosyst Eng 87(2):179–190

    Article  Google Scholar 

  8. Babbitt JD (1950) On the differential equations of diffusion. Can J Res 28a(4):449–474

    Article  MathSciNet  Google Scholar 

  9. Benado AL, Rizvi SSH (1985) Thermodynamic properties of water on rice as calculated from reversible and irreversible isotherms. J Food Sci 50(1):101–105

    Article  Google Scholar 

  10. Beristain CI, Garcia HS, Azuara E (1996) Enthalpy-entropy compensation in food vapor adsorption. J Food Eng 30(3):405–415

    Article  Google Scholar 

  11. Bettelheim FA, Block A, Kaufman LJ (1970) Heats of water vapor sorption in swelling biopolymers. Biopolymers 9(12):1531–1538

    Article  Google Scholar 

  12. Brunauer S, Deming LS, Deming WE et al (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732

    Article  Google Scholar 

  13. Cassini AS, Marczak LDF, Noreña CPZ (2006) Water adsorption isotherms of texturized soy protein. J Food Eng 77(1):194–199

    Article  Google Scholar 

  14. Chen CS (1971) Equilibrium moisture curves for biological materials. Trans ASAE 14(5):924

    Article  Google Scholar 

  15. Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods: part 1 - a review. J Food Technol 13:159–174

    Article  Google Scholar 

  16. Cladera-Olivera F, Pettermann AC, Noreña CPZ et al (2008) Thermodynamic properties of moisture desorption of raw pinhão (Araucaria angustifolia seeds). Int J Food Sci Technol 43(5):900–907

    Article  Google Scholar 

  17. Delgado AE, Sun D-W (2002) Desorption isotherms for cooked and cured beef and pork. J Food Eng 51(2):163–170

    Article  Google Scholar 

  18. Djendoubi Mrad N, Bonazzi C, Boudhrioua N et al (2012) Moisture sorption isotherms, thermodynamic properties, and glass transition of pears and apples. Dry Technol 30(13):1397–1406

    Article  Google Scholar 

  19. Djendoubi Mrad N, Bonazzi C, Courtois F, Kechaou N, Boudhrioua Mihoubi N (2013) Moisture desorption isotherms and glass transition temperatures of osmo-dehydrated apple and pear. Food Bioprod Process. 91(2):121–8

  20. Fasina OO (2006) Thermodynamic properties of sweetpotato. J Food Eng 75(2):149–155

    Article  Google Scholar 

  21. Fasina OO, Ajibola OO, Tyler RT (1999) Thermodynamics of moisture sorption in winged bean seed and gari. J Food Process Eng 22(6):405–418

    Article  Google Scholar 

  22. Fontan CF, Chirife J, Sancho E et al (1982) Analysis of a model for water sorption phenomena in foods. J Food Sci 47(5):1590–1594

    Article  Google Scholar 

  23. Halsey GD (1948) Physical adsorption on non uniform surface. J Chem Phys 16:931–937

    Article  Google Scholar 

  24. Henderson SM (1952) A basic concept of equilibrium moisture. Agric Eng 33:29–32

    Google Scholar 

  25. Iglesias HA, Chirife J (1976a) Equilibrium moisture contents of air dried beef. Dependence on drying temperature. Int J Food Sci Technol 11(6):565–573

    Article  Google Scholar 

  26. Iglesias HA, Chirife J (1976b) Isosteric heats of water vapor sorption on dehydrated foods. I. Analysis of the differential heat curves. Lebensm Wiss Technol 9:116–122

    Google Scholar 

  27. Iglesias HA, Chirife J (1976c) A model for describing the water sorption behavior of foods. J Food Sci 41(5):984–992

    Article  Google Scholar 

  28. Iglesias HA, Chirife J (1976d) Prediction of the effect of temperature on water sorption isotherms of food material. J Food Technol 11:109–116

    Article  Google Scholar 

  29. Iglesias HA, Chirife J (1995) An alternative to the Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. Food Res Int 28(3):317–321

    Article  Google Scholar 

  30. Kapsalis JG (1987) Influences of hysterisis and temperature on moisture sorption isotherms. In: Rockland B, Beuchat LR (eds) Water activity: theory and applications to food. Marcel Dekker, New York, pp 173–213

    Google Scholar 

  31. Kaya S, Kahyaoglu T (2005) Thermodynamic properties and sorption equilibrium of pestil (grape leather). J Food Eng 71(2):200–207

    Article  Google Scholar 

  32. Kaya S, Kahyaoglu T (2007) Moisture sorption and thermodynamic properties of safflower petals and tarragon. J Food Eng 78(2):413–421

    Article  Google Scholar 

  33. Kaymak-Ertekin F, Gedik A (2004) Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT Food Sci Technol 37(4):429–438

    Article  Google Scholar 

  34. Kim SS, Kim SY, Kim DW et al (1999) Moisture sorption characteristics of composite foods filled with chocolate. J Food Sci 64(2):300–302

    Article  Google Scholar 

  35. Krug RR, Hunter WG, Grieger RA (1976) Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data. J Phys Chem 80(21):2335–2341

    Article  Google Scholar 

  36. Labuza TP (1975) Sorption phenomena in foods: theoretical and practical aspects. In: Rha C (ed) Theory, determination and control of physical properties of food materials. Springer Netherlands, Dordrecht, pp 197–219

    Chapter  Google Scholar 

  37. Leffler JE, Grunwald E (1963) Rates and equilibria of organic reactions. Wiley, New York

    Google Scholar 

  38. Lewicki PP (1998) A three parameter equation for food moisture sorption isotherms. J Food Process Eng 21(2):127–144

    Article  Google Scholar 

  39. Lewicki PP (2000) Raoult’s law based food water sorption isotherm. J Food Eng 43(1):31–40

    Article  Google Scholar 

  40. Madamba PS, Driscoll RH, Buckle KA (1996) Enthalpy-entropy compensation models for sorption and browning of garlic. J Food Eng 28(2):109–119

    Article  Google Scholar 

  41. Maskan M, Göǧüş F (1997) The fitting of various models to water sorption isotherms of pistachio nut paste. J Food Eng 33(3):227–237

    Article  Google Scholar 

  42. Mazza G, LeMaguer M (1978) Water sorption properties of yellow globe onion (Allium cepa L.). Can Inst Food Sci Technol J 11(4):189–193

    Article  Google Scholar 

  43. McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60(2):157–165

    Article  Google Scholar 

  44. Moraes MA, Rosa GS, Pinto LAA (2008) Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic. Int J Food Sci Technol 43(10):1824–1831

    Article  Google Scholar 

  45. Nelson RM (1986) Diffusion of bound water in wood. Wood Sci Technol 20(2):125–135

    MathSciNet  Google Scholar 

  46. Oswin CR (1946) The kinetics of package life III. The isotherm. J Chem Ind 65:419–421

    Article  Google Scholar 

  47. Peleg M (1993) Assessment of a semi-empirical four-parameter general model for sigmoid moisture sorption isotherms. J Food Process Eng 16(1):21–37

    Article  Google Scholar 

  48. Rizvi SSH (1995) Thermodynamics of food and dehydration. Marcel Dekker, New York

    Google Scholar 

  49. Rizvi S, Benado A (1984) Thermodynamic properties of dehydrated foods. Food Technol 38:83–92

    Google Scholar 

  50. Roman GN, Urbicain MJ, Rotstein E (1982) Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations. J Food Sci 47:1484–1488

    Article  Google Scholar 

  51. Simal S, Femenia A, Castell-Palou Á et al (2007) Water desorption thermodynamic properties of pineapple. J Food Eng 80(4):1293–1301

    Article  Google Scholar 

  52. Skaar C, Babiak M (1982) A model for bound-water transport in wood. Wood Sci Technol 16(2):123–138

    Article  Google Scholar 

  53. Thompson TL, Peart RM, Foster GH (1986) Mathematical simulation of corn drying: a new model. Trans Am Soc Agric Eng 11:582–586

    Article  Google Scholar 

  54. Tsami E (1991) Net isosteric heat of sorption in dried fruits. J Food Eng 14(4):327–335

    Article  Google Scholar 

  55. van den Berg C (1985) Development of B.E.T.-like models for sorption of water on foods, theory and relevance. In: Simatos D, Multon JL (eds) Properties of water in foods: in relation to quality and stability. Springer Netherlands, Dordrecht, pp 119–131

    Chapter  Google Scholar 

  56. Veltchev ZN, Menkov ND (2000) Desorption isotherms of apples at several temperatures. Dry Technol 18(4–5):1127–1137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoued Mihoubi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbarek, R., Mihoubi, D. Thermodynamic properties and water desorption isotherms of Golden Delicious apples. Heat Mass Transfer 55, 1405–1418 (2019). https://doi.org/10.1007/s00231-018-2527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2527-8

Navigation