Skip to main content
Log in

The recent progress in momentum, heat and mass transfer studies on pneumatic conveying: a review

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Pneumatic conveyors are broadly used in industry because transportation of solid can be performed instantaneously with heating and drying process. The present review focused on all the advancement executed in the field of pneumatic conveying considering the momentum, heat and mass transport phenomenon. The detailed analysis of each transport process like estimation and effects of hydrodynamic variables viz. slip velocity, pressure drop, friction factor, mass flow rate, flow types and particle velocity is summarized. The heat transfer phenomenon by considering the gas-solid heat transfer, as well as riser wall to the gas and particles is also discussed in detail. The mass transfer phenomenon becomes prominent while studying the pneumatic drying, thus the estimation of mass transfer coefficient and its variation with the hydrodynamics of the system is also addressed in brief. The special attention is given to the influence of hydrodynamic, heat and mass transfer parameters on the extent of pneumatic transport. The study also elaborates the empirical equations and assumptions considered while evaluating the unknown variables in each transport process in pneumatic conveying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rajan KS, Dhasandhan K, Srivastava SN, Pitchumani B (2008) Studies on gas-solid heat transfer during pneumatic conveying. Int J Heat Mass Transf 51:2801–2813. https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.042

    Article  MATH  Google Scholar 

  2. Molerus O (1996) Overview: pneumatic transport of solid. Powder Technol 88:309–321. https://doi.org/10.1016/S0032-5910(96)03136-1

    Article  Google Scholar 

  3. Rajan KS, Srivastava SN, Pitchumani B, Surendiran V (2010) Thermal conductance of pneumatic conveying preheater for air-gypsum and air-sand heat transfer. Int J Therm Sci 49:182–186. https://doi.org/10.1016/j.ijthermalsci.2009.07.001

    Article  Google Scholar 

  4. Mansoori Z, Saffar-Avval M, BasiratTabrizi H, Ahmadi G (2004) Experimental study of turbulent gas-solid heat transfer at different particles temperature. Exp Thermal Fluid Sci 28:655–665

    Article  Google Scholar 

  5. Darvishi H, Khodaei J, Azadbakht M (2015) The parameters of mass transfer of convective drying in sliced melon. Philipp Agric 98(1):60–72

    Google Scholar 

  6. Kaensup W, Kulwong S, Wongwises S (2006a) A small-scale pneumatic conveying dryer of rough rice. Dry Technol Int J 24:105–113. https://doi.org/10.1080/07373930500538899

    Article  Google Scholar 

  7. Kaensup W, Kulwong S, Wongwises S (2006b) Comparison of drying kinetics of paddy using a pneumatic conveying dryer with and without a cyclone. Dry Technol 24:1039–1045. https://doi.org/10.1080/07373930600776241

    Article  Google Scholar 

  8. Yan Y (1996) Mass flow measurement of bulk solids in pneumatic pipelines. Meas Sci Technol 7:1687–1706. https://doi.org/10.1088/0957-0233/7/12/002

    Article  Google Scholar 

  9. Lech M (2001) Mass flow rate measurement in vertical pneumatic conveying of solid. Powder Technol 114:55–58. https://doi.org/10.1016/S0032-5910(00)00263-1

    Article  Google Scholar 

  10. Zheng Y, Yang L, Liu Q (2007) Measurement of mass flow rate of particulate solids in gravity chute conveyor based on laser sensing array. Opt Laser Technol 39:298–305. https://doi.org/10.1016/j.optlastec.2005.07.012

    Article  Google Scholar 

  11. Baer C, Mertmann P, Musch T, Jaeschke T, Pohl N (2013) A measuring method for the mass flow determination in a pneumatic conveying system. Conference Paper. https://doi.org/10.1109/ICSENS.2013.6688333

  12. Wang C, Yu H, Zhan N, Kang X, Zhang J (2016) A vibration probe sensor for mass flow rate measurement of gas-solid two-phase flow. Sens Rev 36(2):200–206. https://doi.org/10.1108/SR-07-2015-0107

    Article  Google Scholar 

  13. Lu H, Guo X, Liu Y, Li P, Gong X (2016) Solid-mass flow-rate prediction in dense-phase pneumatic conveying of pulverized coal by a venturi device. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.6b02845

  14. Qian X, Shi D, Yan Y, Zhang W, Guanguan (2017) Effects of moisture content on electrostatic sensing based mass flow measurement of pneumatically conveyed particles. Powder Technol. https://doi.org/10.1016/j.powtec.2016.12.061

  15. Pan R (1999) Material properties and flow modes in pneumatic conveying. Powder Technol 104:157–163. https://doi.org/10.1016/S0032-5910(99)00044-3

    Article  Google Scholar 

  16. Hilton JE, Cleary PW (2011) The influence of particle shape on flow modes in pneumatic conveying. Chem Eng Sci 66:231–240. https://doi.org/10.1016/j.ces.2010.09.034

    Article  Google Scholar 

  17. Bi XT (2011) A generalized flow regime diagram for fluid-solid vertical transport. In: 10th international conference on circulating fluidized beds and fluidization technology -CFB-10

  18. Rabinovich E, Kalman H (2011) Flow regime diagram for verticle pneumatic conveying and fluidized bed system. Powder Technol 207:119–133

    Article  Google Scholar 

  19. Tozlu A, Ozahi E, Kutlar A, Carpinlioglu MO (2012) Modes of flow in pneumatic conveying systems. Recent researches in applied mechanics. Conference Paper

  20. Shijo JS, Behera N (2017) Transient parameter analysis of pneumatic conveying of fine particles for predicting the change of mode of flow. Particuology 32:82–88. https://doi.org/10.1016/j.partic.2016.07.004

    Article  Google Scholar 

  21. Ravisankar S, Smith TN (1986) Slip velocities in pneumatic transport part I. Powder Technol 47:167–177. https://doi.org/10.1016/0032-5910(86)80113-9

    Article  Google Scholar 

  22. Raheman H, Jindal VK (2001) Solid velocity estimation in vertical pneumatic conveying of agricultural grains. Appl Eng Agric 17(2):209–214. https://doi.org/10.13031/2013.5446

    Article  Google Scholar 

  23. Narimatsu CP, Ferreira MC (2001) Verticle pneumatic conveying in dilute and dense- phase flows: Experimental study of the influence of particle density and diameter on fluid dynamic behavior. Braz J Chem Eng. https://doi.org/10.1590/S0104-66322001000300002

    Google Scholar 

  24. Li H, Tomita Y (2002) Measurements of particle velocity and concentration for dilute swirling gas-solid flow in a vertical pipe. Part Sci Technol. https://doi.org/10.1080/02726350215333

  25. Wei W, Qingliang G, Yuxin W, Hairui Y, Jiansheng Z, Junfu L (2011) Experimental study on the solid velocity in horizontal dilute phase pneumatic conveying of fine powders. Powder Technol 212:403–409. https://doi.org/10.1016/j.powtec.2011.06.014

    Article  Google Scholar 

  26. Xu C, Li J, Wang S (2012) A spatial filtering velocimeter for solid particle velocity measurement based on linear electrostatic sensor array. Flow Meas Instrum 26:68–78. https://doi.org/10.1016/j.flowmeasinst.2012.03.006

    Article  Google Scholar 

  27. Munir MW, Khalil BA (2015) Cross correlation velocity measurement of multiphase flow. Int J Sci Res (IJSR) 4(2):SUB151217

    Google Scholar 

  28. Klinzing GE, Basha OM (2017) A correlation for particle velocities in pneumatic conveying. Powder Technol. https://doi.org/10.1016/j.powtec.2017.01.020

  29. Yang W-c (1978) A correlation for solid friction factor in vertical pneumatic conveying lines. AIChE J 24:548–551. https://doi.org/10.1002/aic.690240326

    Article  Google Scholar 

  30. Namkung W, Cho M (2002) Pressure drop in a vertical pneumatic conveying of iron ore. Ind Eng Chem Res 41:5316–5320

    Article  Google Scholar 

  31. Hinkle BL (1953) Acceleration of particles and pressure drops encountered in horizontal pneumatic conveying. Ph.D. thesis, Ga. Inst. Technol., Atlanta

  32. Shimizu A, Echigo R, Hasegawa S (1978) Experimental Study on the Pressure Drop and the Entry Length of the Gas-solid Suspension Flow in a Circular Tube. Int J Multiphase Flow 4(1):53–64

  33. Stemerding S (1962) The Pneumatic Transport of Cracking Catalyst in Vertical Risers. Chem Eng Sci 17:599

    Article  Google Scholar 

  34. Jones JH, Braun WG, Daubert TE, Allendorf HD (1967) Estimation of Pressure Drop for Vertical Pneumatic Transport of Solids. AIChE J 13:608 Complete data have been deposited as document 9358 with the American Documentation Institute, Library of Congress, Washington 25. D.C.

    Article  Google Scholar 

  35. Reddy KVS, Pei DCT (1969) Particle Dynamics in Solidsgas Flow in a Vertical Pipe. Ind Eng Chem Fundam 8:490

    Article  Google Scholar 

  36. van Swaaij WPM, Burman C, van Breugel JW (1970) Shear Stresses on the Wall of a Dense Gas-solids Riser. Chem Eng Sci 25:1818

    Article  Google Scholar 

  37. Capes CE, Nakamura K (1973) Vertical Pneumatic Conveying-An Experimental Study with Particles in the Intermediate and Turbulent Flow Regimes. Can J Chem Eng 51:31

    Article  Google Scholar 

  38. Klinzing GE (1981) Gas-Solid Transport. McGraw-Hill Book Company:New York

  39. Weber M (1991) Friction of the Air and the Air/Solid Mixture in Pneumatic Conveying. Bulk Solids Handling 11(1):99–102

    MathSciNet  Google Scholar 

  40. Konno H, Saito S (1969) Pneumatic conveying of solids through straight pipes. Journal of chemical engineering of Japan. 2(2):211–217

  41. Garic RV, Grbavcic ZB, Jovanovic SD (1995) Hydrodynamic modeling of vertical nonaccelerating gas-solid flow. Powder Technol 84:65–74. https://doi.org/10.1016/0032-5910(95)02976-9

    Article  Google Scholar 

  42. Hariu OH, Molstad MC (1949) Pressure drop in vertical tubes in the transport of solid by gases. Ind Eng Chem 41(PP):1148–1160. https://doi.org/10.1021/ie50474a008

    Article  Google Scholar 

  43. Cao J, Ahmadi G (1995) Gas-particle two-phase turbulent flow in a vertical duct. Int J Multiphase Flow 21(6):1203–1228. https://doi.org/10.1016/0301-9322(95)00042-V

    Article  MATH  Google Scholar 

  44. Tsuji Y, Morikawa Y, Shiomi H (1984) LDV measurement of an air –solid two-phase flow in a vertical pipe. J Fluid Mech 139:417–437. https://doi.org/10.1017/S0022112084000422

    Article  Google Scholar 

  45. Miller A, Gidaspow D (1992) Dense, Vertical Gas-Solid Flow in a Pipe. AIChE J 38(11):1801–1815. https://doi.org/10.1002/aic.690381111

    Article  Google Scholar 

  46. Rautiainen A, Sarkomaa P (1998) Solid friction factors in upward lean gas-solid flows. Powder Technol 95:25–35. https://doi.org/10.1016/S0032-5910(97)03312-3

    Article  Google Scholar 

  47. Rautiainen A, Stewart G, Poikolainen V, Sarkomaa P (1999) An experimental study of vertical pneumatic conveying. Powder Technol 104:139–150. https://doi.org/10.1016/S0032-5910(99)00056-X

    Article  Google Scholar 

  48. Raheman H, Jindal VK (2003) Drag coefficients of agricultural grains in vertical pneumatic conveying. Appl Eng Agric 19(2):197–202. https://doi.org/10.13031/2013.13095

    Article  Google Scholar 

  49. Santos SM, Tambourgi EB, Fernandes FAN, Moraes Junior D, Moraes MS (2011) Dilute-phase pneumatic conveying of polystyrene particles: pressure drop curve and particle distribution over the pipe cross-section. Braz J Chem Eng 28(1):81–88 Sao Paulo. https://doi.org/10.1590/S0104-66322011000100010

    Article  Google Scholar 

  50. Rajan KS (2012) Simulation of vertical gas-solid flow: comparison of correlations for particle wall friction and drag coefficient. Int J ChemTech Res 4(4):1314–1321

    Google Scholar 

  51. Behera N, Agarwal VK, Jones M, Williams KC (2012) Modeling and analysis of solid friction factor for fluidized dense phase pneumatic conveying of powders. Part Sci Technol 31:136–146. https://doi.org/10.1080/02726351.2012.672544

    Article  Google Scholar 

  52. Behera N, Agarwal VK, Jones MG (2015) A model of solids friction factor for fluidized dense phase pneumatic conveying. Powder Technol. https://doi.org/10.1016/j.powtec.2015.07.010

  53. Welahettige P, Hiromi Ariyaratne WK, Melaaen MC (2017) Euler-granular approach for modelling of dilute phase pneumatic conveying in a vertical pipe. Conference Paper https://doi.org/10.3384/ecp17138227

  54. Ariyaratne WKH, Welahettige P, Melaaen MC (2018) A parametric study for Euler-granular model in Dilute phase vertical pneumatic conveying. Int J Comp Meth Exp Meas 6(1):46–58. https://doi.org/10.2495/CMEM-V6-N1-46-58

    Google Scholar 

  55. Bandrowski J, Kaczmarzyk G (1978) Gas to particle heat transfer in vertical pneumatic conveying of granular materials. Chem Eng Sci 33:1303–1310. https://doi.org/10.1016/0009-2509(78)85111-2

    Article  Google Scholar 

  56. Freitas LAP, Freire JT (2001) Gas to particle heat transfer in the draft tube of a spouted bed. Dry Technol Int J 19(6):1065–1082. https://doi.org/10.1081/DRT-100104805

    Article  Google Scholar 

  57. Rajan KS, Pitchumani B, Srivastava SN, Mohanty B (2007a) Two-dimensional simulation of gas solid heat transfer in pneumatic conveying. Int J Heat Mass Transf 50:967–976. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.009

    Article  MATH  Google Scholar 

  58. Rajan KS, Srivastava SN, Pitchumani B, Mohanty B (2007b) Simulation of countercurrent gas– solid heat exchanger: effect of solid loading ratio and particle size. Appl Therm Eng 27:1345–1351. https://doi.org/10.1016/j.applthermaleng.2006.10.026

    Article  Google Scholar 

  59. Tsuji Y (1986) Turbulence in gas-solid flows. In: Cheremisninoff NP (ed) Encyclopedia of fluid mechanics. Gulf Publishing, Houston pp, pp 9.299–9.301

    Google Scholar 

  60. Frian MJ (2004) Investigation of the influence of gas and solid particle interaction on the heat transfer effectiveness of a falling-bed heat exchanger, Ph.D. thesis, University of Massachusetts Amherst

  61. Zheng Y, Pugh JR, McGlinchey D, Knight EA, Liu Q (2011) Numerical analysis of heat transfer mechanisms to pneumatically conveyed dense phase flow. Powder Technol 208:231–236. https://doi.org/10.1016/j.powtec.2010.11.032

    Article  Google Scholar 

  62. El-Behery SM, El-Askary WA, Ibrahim KA, Hamed MH (2011a) Porous particle drying in a vertical upward pneumatic conveying dryer. Int J Aerosp Mech Eng 5:2 World Academy of Science, Engineering and Technology 53

    Google Scholar 

  63. El-Behery SM, El-Askary WA, Hamed MH, Ibrahim KA (2011b) Hydrodynamic and thermal fields analysis in gas–solid two-phase flow. Int J Heat Fluid Flow 32:740–754. https://doi.org/10.1016/j.ijheatfluidflow.2011.02.003

    Article  Google Scholar 

  64. Beddai BA, Gupta AVSSKS, Naik MT, Beddai AA (2014) Study the effect of different operating parameters on heat transfer coefficient in gas-solid fluidized using horizontal heat transfer probe. Int J Adv Res Eng Technol (IJARET) 5(7):39–46

    Google Scholar 

  65. Patro P, Patro B, Murugan S (2014) Prediction of two-phase heat transfer and pressure drop in dilute gas-solid flows: a numerical investigation. Dry Technol 32:1167–1178. https://doi.org/10.1080/07373937.2014.887095

    Article  Google Scholar 

  66. Tada Y, Yoshioka S, Takimoto A, Hayashi Y (2016) Heat transfer enhancement in a gas–solid suspension flow by applying electric field. Int J Heat Mass Transf 93:778–787. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.063

    Article  Google Scholar 

  67. Arvind T, Thiyagu R, Nelson H (2017) Effect of performance parameters on the pneumatic conveying solid gas heat transfer. Int J Ambient Energy. https://doi.org/10.1080/01430750.2017.1399452

  68. Radford RD (1997) A model of particulate drying in pneumatic conveying system. Powder Technol 93:109–126. https://doi.org/10.1016/S0032-5910(97)03237-3

    Article  Google Scholar 

  69. Pelegrina AH, Crapiste GH (2001) Modeling the pneumatic drying of food particles. J Food Eng 48:301–310. https://doi.org/10.1016/S0260-8774(00)00170-9

    Article  Google Scholar 

  70. Narimatsu CP, Freire JT (2003) Drying in a vertical pneumatic bed: study of the fluid dynamic and heat transfer. In: 17th international congress of mechanical engineering November 10–14 Sao Paulo

  71. Narimatsu CP, Ferreira MC, Freire JT (2004) Drying of porous alumina particles in a vertical pneumatic dryer. In: Proceeding of the 14th international drying symposium vol. A pp 549–556

  72. Bunyawanichakul P, Walker GJ, Sargison JE, Doe PE (2007) Modelling and simulation of paddy grain (rice) drying in a simple pneumatic dryer. Biosyst Eng 96(3):335–344. https://doi.org/10.1016/j.biosystemseng.2006.11.004

    Article  Google Scholar 

  73. Narimatsu CP, Ferreira MC, Freire JT (2007) Drying of coarse particles in a vertical pneumatic conveyor. Dry Technol 25:291–302. https://doi.org/10.1080/07373930601119599

    Article  Google Scholar 

  74. Indarto A, Halim Y, Partoputro P (2007) Pneumatic drying of solid particle: Experimental and model comparison. Exp Heat Transfer 20:277–287. https://doi.org/10.1080/08916150701418252

    Article  Google Scholar 

  75. Liu X, Chen J, Liu M, Zhu D, Yi R, Liu G (2010) One-dimensional two-fluid model for pneumatic drying wet alumina particle. Int Conf Comput Control Ind Eng. https://doi.org/10.1109/CCIE.2010.19

  76. El-Behery SM, El-Askary WA, Hamed MH, Ibrahim KA (2013) Eulerian–lagrangian simulation and experimental validation of pneumatic conveying dryer. Dry Technol 31:1374–1387. https://doi.org/10.1080/07373937.2013.796483

    Article  Google Scholar 

  77. Aubin A, Ansart R, Hemati M, Lasuye T, Branly M (2014) Modeling and simulation of drying operations in PVC powder production line: Experimental and theoretical study of drying kinetics on particle scale. Powder Technol 255:120–133. https://doi.org/10.1016/j.powtec.2013.08.019

    Article  Google Scholar 

  78. Bhattarai S, Jae-Heun O, Euh S-H, Kim DH, Yu L (2014) Simulation study for pneumatic drying of sawdust for pellet production. Dry Technol 32:1142–1156. https://doi.org/10.1080/07373937.2014.884575

    Article  Google Scholar 

  79. Suherman, Kumoro AC, Kusworo TD (2015) Experimental study on drying kinetic of cassava starch in a pneumatic drying system. In: International conference of chemical and material engineering (ICCME), AIP conf. proc. 1699. 050001–1–050001-6. https://doi.org/10.1063/1.4938337

  80. Kahveci K (2016) Modeling and numerical simulation of simultaneous heat and mass transfer during convective drying of porous materials. Text Res J 0(00):1–14. https://doi.org/10.1177/0040517516635998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Dhurandhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhurandhar, R., Sarkar, J.P. & Das, B. The recent progress in momentum, heat and mass transfer studies on pneumatic conveying: a review. Heat Mass Transfer 54, 2617–2634 (2018). https://doi.org/10.1007/s00231-018-2275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2275-9

Navigation