Skip to main content
Log in

Different parameter and technique affecting the rate of evaporation on active solar still -a review

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Water is one of the essential sources for the endurance of human on the earth. As earth having only a small amount of water resources for consumption purpose people in rural and urban areas are getting affected by consuming dirty water that leads to water-borne diseases. Even though ground water is available in small quantity, it has to be treated properly before its use for internal consumption. Brackish water contains dissolve and undissolved contents, and hence it is not suitable for the household purpose. Nowadays, distillation process is done by using passive and active solar stills. The major problem in using passive solar still is meeting higher demand for fresh water. The fresh water production from passive solar still is critically low to meet the demand. To improve the productivity of conventional solar still, input feed water is preheated by integrating the solar still to different collector panels. In this review article, the different parameters that affect the rate of evaporation in an active solar still and the different methods incorporated has been presented. In addition to active distillation system, forced convection technique can be incorporated to increase the yield of fresh water by decreasing the temperature of cover. Furthermore, it is identified that the yield of fresh water from the active desalination system can be improved by sensible and latent heat energy storage. This review will motivate the researchers to decide appropriate active solar still technology for promoting development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85

Similar content being viewed by others

Abbreviations

ASBS:

Active Single Basin Solar Still

CCPSS:

Pyramid Solar Still

CPC:

Compound Parabolic Concentrator

CSS:

Conventional Solar Still

DSS:

Developed Solar Still

ET:

Evacuated Tube

ETC:

Evacuated Tube Collector

FPC:

Flat Plate Collector

HP:

Heat Pipe

PC:

Parabolic Concentrator

PCM:

Phase Change Material

PDC:

Parabolic Dish Concentrator

PHP:

Pulsating Heat Pipes

PSC:

Parabolic Shaped Concentrator

PTC:

Parabolic Trough Collector

SP:

Solar Pond

SSP:

Shallow Solar Pond

References

  1. Tiwari GN, Tiwari AK (2007) Solar distillation practice in water desalination systems. Anamaya Pub Ltd, New Delhi

    Google Scholar 

  2. Sathyamurthy R, Harris Samuel DG, Nagarajan PK, Arunkumar T (2016) Geometrical variations in solar stills for improving the fresh water yield—a review. Desalin Water Treat 57(45):21145–21159

    Article  Google Scholar 

  3. Sathyamurthy R, Samuel DH, Nagarajan PK, El-Agouz SA (2015) A review of different solar still for augmenting fresh water yield. J Environ Sci Technol 8(6):244–265

    Article  Google Scholar 

  4. Sathyamurthy R, Samuel DH, Nagarajan PK (2016) Theoretical analysis of inclined solar still with baffle plates for improving the fresh water yield. Process Saf Environ Prot 101:93–107

    Article  Google Scholar 

  5. Sathyamurthy R, Nagarajan PK, El-Agouz SA, Jaiganesh V, Sathish Khanna P (2015) Experimental investigation on a semi-circular trough-absorber solar still with baffles for freshwater production. Energy Conversion and Management 97:235–242

    Article  Google Scholar 

  6. Sivakumar V, Sundaram EG (2013) Improvement techniques of solar still efficiency: a review. Renew Sust Energ Rev 28:246–264

    Article  Google Scholar 

  7. Sathyamurthy R, El-Agouz SA, Dharmaraj V (2015) Experimental analysis of a portable solar still with evaporation and condensation chambers. Desalination 367:180–185

    Article  Google Scholar 

  8. Omara ZM, Abdullah AS, Kabeel AE, Essa FA (2017) The cooling techniques of the solar stills' glass covers–a review. Renew Sust Energ Rev 78:176–193

    Article  Google Scholar 

  9. Nagarajan PK, El-Agouz SA, Arunkumar T, Sathyamurthy R (2016) Effect of forced cover cooling technique on a triangular pyramid solar still. Int J Ambient Energy 1–8

  10. Murugavel KK, Chockalingam KK, Srithar K (2008) Progresses in improving the effectiveness of the single basin passive solar still. Desalination 220(1-3):677–686

    Article  Google Scholar 

  11. Velmurugan V, Srithar K (2011) Performance analysis of solar stills based on various factors affecting the productivity—a review. Renew Sust Energ Rev 15(2):1294–1304

    Article  Google Scholar 

  12. Kabeel AE, El-Agouz SA (2011) Review of researches and developments on solar stills. Desalination 276(1):1–12

    Article  Google Scholar 

  13. Sathyamurthy R, El-Agouz SA, Nagarajan PK, Subramani J, Arunkumar T, Mageshbabu D, Madhu B, Bharathwaaj R, Prakash, N (2017) A review of integrating solar collectors to solar still. Renew Sust Energ Rev 77:1069–1097

  14. Kabeel AE, Arunkumar T, Denkenberger DC, Sathyamurthy R (2017) Performance enhancement of solar still through efficient heat exchange mechanism–a review. Appl Therm Eng 114:815–836

  15. Kabeel AE, Omara ZM, Essa FA, Abdullah AS (2016) Solar still with condenser–a detailed review. Renew Sust Energ Rev 59:839–857

    Article  Google Scholar 

  16. Kabeel AE, Omara ZM, Younes MM (2015) Techniques used to improve the performance of the stepped solar still—a review. Renew Sust Energ Rev 46:178–188

    Article  Google Scholar 

  17. Sharshir SW, Elsheikh AH, Peng G, Yang N, El-Samadony MOA, Kabeel AE (2017) Thermal performance and exergy analysis of solar stills–a review. Renew Sust Energ Rev 73:521–544

    Article  Google Scholar 

  18. Harris Samuel DG, Nagarajan PK, Arunkumar T, Kannan E, Sathyamurthy R (2016) Enhancing the solar still yield by increasing the surface area of water—a review. Environ Prog Sustain Energy 35(3):815–822

    Article  Google Scholar 

  19. Tiwari GN, Sahota L (2017) Review on the energy and economic efficiencies of passive and active solar distillation systems. Desalination 401:151–179

    Article  Google Scholar 

  20. Prakash P, Velmurugan V (2015) Parameters influencing the productivity of solar stills–a review. Renew Sust Energ Rev 49:585–609

    Article  Google Scholar 

  21. El-Sebaii AA, El-Bialy E (2015) Advanced designs of solar desalination systems: a review. Renew Sust Energ Rev 49:1198–1212

    Article  Google Scholar 

  22. Panchal HN, Patel S (2017) An extensive review on different design and climatic parameters to increase distillate output of solar still. Renew Sust Energ Rev 69:750–758

    Article  Google Scholar 

  23. Ayoub GM, Malaeb L (2012) Developments in solar still desalination systems: a critical review. Crit Rev Environ Sci Technol 42(19):2078–2112

    Article  Google Scholar 

  24. Goosen MF, Mahmoudi H, Ghaffour N (2014) Today's and future challenges in applications of renewable energy technologies for desalination. Crit Rev Environ Sci Technol 44(9):929–999

    Article  Google Scholar 

  25. Manokar AM, Murugavel KK, Esakkimuthu G (2014) Different parameters affecting the rate of evaporation and condensation on passive solar still–a review. Renew Sust Energ Rev 38:309–322

    Article  Google Scholar 

  26. Manokar AM, Winston DP, Kabeel AE, El-Agouz SA, Sathyamurthy R, Arunkumar T et al (2017) Integrated PV/T solar still-a mini-review. Desalination. https://doi.org/10.1016/j.desal.2017.04.022

  27. El-Agouz SA, Sathyamurthy R (2017) Improvement of humidification–dehumidification desalination unit using a desiccant wheel. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2017.06.004

  28. Tripathi R, Tiwari GN (2005) Effect of water depth on internal heat and mass transfer for active solar distillation. Desalination 173(2):187–200

    Article  Google Scholar 

  29. Gupta RA, Rai SN, Tiwari GN (1988) Transient analysis of double basin solar still with intermittent flow of waste hot water in night. Energy Convers Manag 28(3):245–249

    Article  Google Scholar 

  30. Sodha MS, Kumar A, Tiwari GN (1981) Utilization of waste hot water for distillation. Desalination 37(3):325–342

    Article  Google Scholar 

  31. Tiwari GN (1985) Performance of solar still with intermittent flow of waste hot water in the basin. Desalination 52(3):345–357

    Article  Google Scholar 

  32. Tiwari GN, Garg HP (1985) Effect of water flow over the glass cover of a single basin solar still with an intermittent flow of waste hot water in the basin. Energy Convers Manag 25(3):315–322

    Article  Google Scholar 

  33. Yadav YP, Kumar A (1991) Transient analytical investigations on a single basin solar still with water flow in the basin. Energy Convers Manag 31(1):27–38

    Article  Google Scholar 

  34. Tiris C, Tiris M, Erdalli Y, Sohmen M (1998) Experimental studies on a solar still coupled with a flat-plate collector and a single basin still. Energy Convers Manag 39(8):853

    Article  Google Scholar 

  35. Dimri V, Sarkar B, Singh U, Tiwari GN (2008) Effect of condensing cover material on yield of an active solar still: an experimental validation. Desalination 227(1–3):178–189

    Article  Google Scholar 

  36. Kumar S, Dwivedi VK (2015) Experimental study on modified single slope single basin active solar still. Desalination 367:69–75

    Article  Google Scholar 

  37. Badran AA, Al-Hallaq IA, Salman IAE, Odat MZ (2005) A solar still augmented with a flat-plate collector. Desalination 172(3):227–234

    Article  Google Scholar 

  38. Badran OO, Al-Tahaineh HA (2005) The effect of coupling a flat-plate collector on the solar still productivity. Desalination 183(1–3):137–142

    Article  Google Scholar 

  39. Rai SN, Tiwari GN (1983) Single basin solar still coupled with flat plate collector. Energy Convers Manag 23(3):145–149

    Article  Google Scholar 

  40. Kumar S, Tiwari GN, Singh HN (2000) Annual performance of an active solar distillation system. Desalination 127(1):79–88

    Article  Google Scholar 

  41. Singh HN, Tiwari GN (2004) Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination 168:145–150

    Article  Google Scholar 

  42. Rajaseenivasan T, Raja PN, Srithar K (2014) An experimental investigation on a solar still with an integrated flat plate collector. Desalination 347:131–137

    Article  Google Scholar 

  43. Eltawil MA, Omara ZM (2014) Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination 349:1–9

    Article  Google Scholar 

  44. Morad MM, El-Maghawry HA, Wasfy KI (2015) Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 373:1–9

    Article  Google Scholar 

  45. Raju VR, Narayana RL (2016) Effect of flat plate collectors in series on performance of active solar still for Indian coastal climatic condition. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2015.12.008

  46. Feilizadeh M, Estahbanati MK, Jafarpur K, Roostaazad R, Feilizadeh M, Taghvaei H (2015) Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors. Appl Energy 152:39–46

    Article  Google Scholar 

  47. Yadav YP (1989) Transient analysis of double-basin solar still integrated with collector. Desalination 71(2):151–164

    Article  Google Scholar 

  48. Voropoulos K, Mathioulakis E, Belessiotis V (2001) Experimental investigation of a solar still coupled with solar collectors. Desalination 138(1):103–110

    Article  Google Scholar 

  49. Yadav YP (1991) Analytical performance of a solar still integrated with a flat plate solar collector: Thermosiphon mode. Energy Convers Manag 31(3):255–263

    Article  Google Scholar 

  50. Dwivedi VK, Tiwari GN (2010) Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination 250(1):49–55

    Article  Google Scholar 

  51. Sethi AK, Dwivedi VK (2013) Exergy analysis of double slope active solar still under forced circulation mode. Desalin Water Treat 51(40–42):7394–7400

    Article  Google Scholar 

  52. Deniz E (2016) Energy and exergy analysis of flat plate solar collector-assisted active solar distillation system. Desalin Water Treat 57(51):24313–24321

    Article  Google Scholar 

  53. Kumar S, Tiwari GN (1999) Optimization of design parameters for multi-effect active distillation systems using the Runge-Kutta method. Desalination 121(1):87–96

    Article  Google Scholar 

  54. Tiris C, Tiris M, Türe İE (1996) Improvement of basin type solar still performance: use of various absorber materials and solar collector integration. Renew Energy 9(1–4):758–761

    Article  Google Scholar 

  55. Prasad B, Tiwari GN (1996) Analysis of double effect active solar distillation. Energy Convers Manag 37(11):1647–1656

    Article  Google Scholar 

  56. Singh DB, Tiwari GN (2017) Exergoeconomic, enviroeconomic and productivity analyses of basin type solar stills by incorporating N identical PVT compound parabolic concentrator collectors: a comparative study. Energy Convers Manag 135:129–147

    Article  Google Scholar 

  57. Arunkumar T, Velraj R, Denkenberger D, Sathyamurthy R, Vinothkumar K, Porkumaran K, Ahsan A (2016) Effect of heat removal on tubular solar desalting system. Desalination 379:24–33

    Article  Google Scholar 

  58. Arunkumar T, Velraj R, Denkenberger DC, Sathyamurthy R, Kumar KV, Ahsan A (2016) Productivity enhancements of compound parabolic concentrator tubular solar stills. Renew Energy 88:391–400

    Article  Google Scholar 

  59. Arunkumar T, Velraj R, Ahsan A, Khalifa AJN, Shams S, Denkenberger D, Sathyamurthy R (2016) Effect of parabolic solar energy collectors for water distillation. Desalin Water Treat 57(45):21234–21242

    Article  Google Scholar 

  60. Arunkumar T, Vinothkumar K, Ahsan A, Jayaprakash R, Kumar S (2012) Experimental study on various solar still designs. ISRN Renew Energy 2012:10 https://doi.org/10.5402/2012/569381

  61. Arunkumar T, Jayaprakash R, Ahsan A, Denkenberger D, Okundamiya MS (2013) Effect of water and air flow on concentric tubular solar water desalting system. Appl Energy 103:109–115

    Article  Google Scholar 

  62. Arunkumar T, Denkenberger D, Ahsan A, Jayaprakash R (2013) The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination 314:189–192

    Article  Google Scholar 

  63. Singh SK, Bhatnagar VP, Tiwari GN (1996) Design parameters for concentrator assisted solar distillation system. Energy Convers Manag 37(2):247–252

    Article  Google Scholar 

  64. Abdel-Rehim ZS, Lasheen A (2007) Experimental and theoretical study of a solar desalination system located in Cairo, Egypt. Desalination 217(1–3):52–64

    Article  Google Scholar 

  65. Elashmawy M (2017) An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination 411:1–8

    Article  Google Scholar 

  66. García-Rodríguez L, Gómez-Camacho C (1999) Design parameter selection for a distillation system coupled to a solar parabolic trough collector. Desalination 122(2–3):195–204

    Article  Google Scholar 

  67. Scrivani A, El Asmar T, Bardi U (2007) Solar trough concentration for fresh water production and waste water treatment. Desalination 206(1–3):485–493

    Article  Google Scholar 

  68. Kumar S, Sinha S (1996) Transient model and comparative study of concentrator coupled regenerative solar still in forced circulation mode. Energy Convers Manag 37(5):629–636

    Article  Google Scholar 

  69. Kabeel AE, Abdelgaied M (2017) Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin. Sol Energy 144:71–78

    Article  Google Scholar 

  70. Tiwari GN, Dimri V, Singh U, Chel A, Sarkar B (2007) Comparative thermal performance evaluation of an active solar distillation system. Int J Energy Res 31(15):1465–1482

    Article  Google Scholar 

  71. Kumar S, Dubey A, Tiwari GN (2014) A solar still augmented with an evacuated tube collector in forced mode. Desalination 347:15–24

    Article  Google Scholar 

  72. Shafii MB, Shahmohamadi M, Faegh M, Sadrhosseini H (2016) Examination of a novel solar still equipped with evacuated tube collectors and thermoelectric modules. Desalination 382:21–27

    Article  Google Scholar 

  73. Omara ZM, Eltawil MA, ElNashar EA (2013) A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination 325:56–64

    Article  Google Scholar 

  74. Mamouri SJ, Derami HG, Ghiasi M, Shafii MB, Shiee Z (2014) Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy 75:501–507

    Article  Google Scholar 

  75. Mosleh HJ, Mamouri SJ, Shafii MB, Sima AH (2015) A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Convers Manag 99:141–150

    Article  Google Scholar 

  76. Dev R, Tiwari GN (2012) Annual performance of evacuated tubular collector integrated solar still. Desalin Water Treat 41(1–3):204–223

    Article  Google Scholar 

  77. Panchal HN, Thakkar H (2016) Theoretical and experimental validation of evacuated tubes directly coupled with solar still. Therm Eng 63(11):825–831

    Article  Google Scholar 

  78. Tanaka H, Nakatake Y, Tanaka M (2005) Indoor experiments of the vertical multiple-effect diffusion-type solar still coupled with a heat-pipe solar collector. Desalination 177(1–3):291–302

    Article  Google Scholar 

  79. Chong TL, Huang BJ, Wu PH, Kao YC (2014) Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe. Desalination 347:66–76

    Article  Google Scholar 

  80. Huang BJ, Chong TL, Wu PH, Dai HY, Kao YC (2015) Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe. Desalination 362:74–83

    Article  Google Scholar 

  81. Abad HKS, Ghiasi M, Mamouri SJ, Shafii MB (2013) A novel integrated solar desalination system with a pulsating heat pipe. Desalination 311:206–210

    Article  Google Scholar 

  82. Gorjian S, Ghobadian B, Hashjin TT, Banakar A (2014) Experimental performance evaluation of a stand-alone point-focus parabolic solar still. Desalination 352:1–17

    Article  Google Scholar 

  83. Arunkumar T, Denkenberger D, Velraj R, Sathyamurthy R, Tanaka H, Vinothkumar K (2015) Experimental study on a parabolic concentrator assisted solar desalting system. Energy Convers Manag 105:665–674

    Article  Google Scholar 

  84. Srithar K, Rajaseenivasan T, Karthik N, Periyannan M, Gowtham M (2016) Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renew Energy 90:157–165

    Article  Google Scholar 

  85. Omara ZM, Eltawil MA (2013) Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination 326:62–68

    Article  Google Scholar 

  86. Arunkumar T, Velraj R, Denkenberger DC, Sathyamurthy R (2016) Influence of crescent shaped absorber in water desalting system. Desalination 398:208–213

    Article  Google Scholar 

  87. Velmurugan V, Srithar K (2007) Solar stills integrated with a mini solar pond—analytical simulation and experimental validation. Desalination 216(1–3):232–241

    Article  Google Scholar 

  88. Velmurugan V, Mandlin J, Stalin B, Srithar K (2009) Augmentation of saline streams in solar stills integrating with a mini solar pond. Desalination 249(1):143–149

    Article  Google Scholar 

  89. El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Salem N (2008) Thermal performance of a single-basin solar still integrated with a shallow solar pond. Energy Convers Manag 49(10):2839–2848

    Article  Google Scholar 

  90. El-Sebaii AA, Aboul-Enein S, Ramadan MRI, Khallaf AM (2011) Thermal performance of an active single basin solar still (ASBS) coupled to shallow solar pond (SSP). Desalination 280(1):183–190

    Article  Google Scholar 

  91. Naveen Kumar P, Harris Samuel DG, Nagarajan PK, Sathyamurthy R (2016) Theoretical analysis of a triangular pyramid solar still integrated to an inclined solar still with baffles. Int J Ambient Energy. https://dx.doi.org/10.1080/01430750.2016.1181569

  92. Eltawil MA, Zhengming Z (2009) Wind turbine-inclined still collector integration with solar still for brackish water desalination. Desalination 249(2):490–497

    Article  Google Scholar 

  93. Sampathkumar K, Arjunan TV, Pitchandi P, Senthilkumar P (2010) Active solar distillation—a detailed review. Renew Sust Energ Rev 14(6):1503–1526

    Article  Google Scholar 

  94. Sampathkumar K, Senthilkumar P (2012) Utilization of solar water heater in a single basin solar still—an experimental study. Desalination 297:8–19

    Article  Google Scholar 

  95. El-Sebaii AA, Yaghmour SJ, Al-Hazmi FS, Faidah AS, Al-Marzouki FM, Al-Ghamdi AA (2009) Active single basin solar still with a sensible storage medium. Desalination 249(2):699–706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu Manokar A.

Ethics declarations

Conflict of interest

The authors declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A, M., D, P., A. E, K. et al. Different parameter and technique affecting the rate of evaporation on active solar still -a review. Heat Mass Transfer 54, 593–630 (2018). https://doi.org/10.1007/s00231-017-2170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2170-9

Navigation