Skip to main content
Log in

Three-dimensional flow channel arrangements in an anode-supported honeycomb solid oxide fuel cell

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An anode-supported honeycomb SOFC can achieve high volumetric power density and improve thermo-mechanical durability at high temperatures. We have so far fabricated a honeycomb cell with a cathode layer made of La0.7Sr0.3MnO3 (LSM) and an electrolyte layer of 8YSZ on a porous anode support in the honeycomb form of Ni/8YSZ. In the present study, current-voltage and volumetric power density characteristics of the cells having different anode/cathode flow channel arrangements are measured under different flow rates of fed hydrogen to show the effect of three-dimensional fuel transport and distribution in the porous anode support on the cell performance. Ohmic resistances of the cells varying with current is also evaluated to clarify the nickel re-oxidation of the anode support by fuel depletion depending on the anode flow channel arrangements. We thereby discuss the difference of the advantage between the flow channel arrangements depending on the flow rate of the fed fuel to choose more suitable operation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ackerman JP, Young JE (1984) Solid oxide fuel cell having monolithic core. U.S. Pat 4476198

  2. Wetzko M, Belzner A, Rohr FJ, Harbach F (1999) Solid oxide fuel cell stacks using extruded honeycomb type elements. J Power Sources 83:148–155

    Article  Google Scholar 

  3. Zhong H, Matsumoto H, Toriyama A, Ishihara T (2009) Honeycomb-type solid oxide fuel cell using La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte for high volumetric power density. J Electrochem Soc 156(1):B74–B79

    Article  Google Scholar 

  4. Wang Z, Shimizu S, Yamazaki Y (2008) Interconnection and sealing using silver metal for honeycomb SOFCs. J Fuel Cell Sci Tech 5(3):031211

  5. Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M (2009) Evaluation of extruded cathode honeycomb monolith-supported SOFC under rapid start-up operation. Electrochim Acta 54:1478–1482

    Article  Google Scholar 

  6. Ruiz-Morales JC, Marrero-López D, Peña-Martínez J, Canales-Vázquez J, Josep Roa J, Segarra M, Savvin SN, Núñez P (2010) Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure. J Power Sources 195(2):516–521

    Article  Google Scholar 

  7. Fukushima A, Nakajima H, Kitahara T (2013) Performance evaluation of an anode-supported honeycomb solid oxide fuel cell. ECS Trans 50(48):B71–B75

    Article  Google Scholar 

  8. Kotake S, Nakajima H, Kitahara T (2015) Mass transfer in an anode-supported honeycomb solid oxide fuel cell. ECS Trans 64(45):135–142

    Article  Google Scholar 

  9. Nakajima H, Kitahara T, Konomi T (2010) Electrochemical impedance spectroscopy analysis of an anode-supported microtubular solid oxide fuel cell. J Electrochem Soc 157(11):B1686–B1692

    Article  Google Scholar 

  10. Kim J-D, Kim G-D, Moon J-W, Park Y-I, Lee W-H, Kobayashi K, Nagai M, Kim C-E (2001) Electrochemical impedance spectroscopy analysis of an anode-supported microtubular solid oxide fuel cell. Solid State Ionics 143(3–4):379–389

    Google Scholar 

  11. Mench MM (2008) Fuel cell engines. Wiley, Hoboken

    Book  Google Scholar 

  12. Aydın Ö, Nakajima H, Kitahara T (2016) Processes involving in the temperature variations in solid oxide fuel cells in-situ analyzed through electrode-segmentation method. J Electrochem Soc 163(3):F216–F224

    Article  Google Scholar 

  13. Aydın Ö, Takahiro K, Nakajima H, Kitahara T (2015) In-situ diagnosis and assessment of longitudinal current variation by electrode-segmentation method in anode-supported microtubular solid oxide fuel cells. J Power Sources 279:218–223

    Article  Google Scholar 

  14. (2014) Mitsubishi Hitachi to integrate SOFC with micro gas turbine for Kyushu University demonstration. Fuel Cells Bull 2014(12):1-1

Download references

Acknowledgements

The present work was supported by the JSPS (Japanese Society for Promotion of Science) Grant-in-Aid for Scientific Research (C) 15 K05834. The authors acknowledge Professors Kohei Ito and Kazunari Sasaki at Kyushu University for valuable discussions. The SEM and EDX observations were performed at the Center of Advanced Instrumental Analysis, Kyushu University.

Funding

This study was funded by the JSPS (Japanese Society for Promotion of Science) Grant-in-Aid for Scientific Research (C) (15 K05834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, H., Murakami, S., Ikeda, S. et al. Three-dimensional flow channel arrangements in an anode-supported honeycomb solid oxide fuel cell. Heat Mass Transfer 54, 2545–2550 (2018). https://doi.org/10.1007/s00231-017-2154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2154-9

Navigation