Skip to main content
Log in

The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Surface area (m2)

D, d:

Diameter (m)

h :

Latent heat of evaporation (kJ/kg)

q:

Heat flux (W/m2)

T:

Temperature (°C, K)

Q :

Heat (kJ)

u :

Droplet velocity (m/s)

We:

Weber number

β:

Spreading ratio

ρ:

Density (kg/m3)

σ:

Surface tension (N/m)

θ:

Contact angle (°)

τ:

Evaporation time (s)

∞:

Surrounding/ambient

corr :

Correction

drop :

Drop

g :

Gas

KY :

Kurabayashi–Yang

l :

Liquid

Leid :

Leidenfrost

max :

Maximum

o :

Origin

s :

Solid; surface, spreading

w :

Wall

References

  1. Grissom WM, Wierum FA (1981) Liquid spray cooling of a heated surface. Int J Heat Mass Transf 24:261–271. doi:10.1016/0017-9310(81)90034-X

    Article  Google Scholar 

  2. Bechtel SE, Bogy DB, Talke FE (1981) Impact of a liquid drop against a flat surface. IBM J Res Dev 25:963–971

    Article  Google Scholar 

  3. Chandra S, Avedisian CTT (1991) On the collision of a droplet with a solid surface. Proc R Soc A Math Phys Eng Sci 432:13–41. doi:10.1098/rspa.1991.0002

    Article  Google Scholar 

  4. Bernardin JDID, Mudawar I, Walsh CB et al (1997) Contact angle temperature dependence for water droplets on practical aluminum surfaces. Int J Heat Mass Transf 40:1017–1033. doi:10.1016/0017-9310(96)00184-6

    Article  Google Scholar 

  5. Deendarlianto, Takata Y, Hidaka S, Kohno M (2008) The effect of contact angle on evaporation of water droplet on a heated solid surface. In: Fifth international conference on transport phenomena in multiphase systems. Bialystok, Poland, pp 59–64

  6. Eggers J, Fontelos MA, Josserand C, Zaleski S (2010) Drop dynamics after impact on a solid wall: theory and simulations. Phys Fluids 22:1–14. doi:10.1063/1.3432498

    MATH  Google Scholar 

  7. Coursey JS (2007) Enhancement of spray cooling heat transfer using extended surfaces and nanofluids. University of Maryland

  8. Bernardin JD, Stebbins CJ, Mudawar I (1997) Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int J Heat Mass Transf 40:247–267. doi:10.1016/0017-9310(96)00119-6

    Article  Google Scholar 

  9. Lee SY, Ryu SU (2006) Recent progress of spray-wall interaction research. J Mech Sci Technol 20:1101–1117. doi:10.1007/BF02916010

    Article  Google Scholar 

  10. Deendarlianto Takata Y, Hidaka S et al (2014) Effect of static contact angle on the droplet dynamics during the evaporation of a water droplet on the hot walls. Int J Heat Mass Transf 71:691–705. doi:10.1016/j.ijheatmasstransfer.2013.12.066

    Article  Google Scholar 

  11. Ito T, Takata Y, Mousa MMM (1992) Studies on the water cooling hot surfaces (analysis of spray cooling in the region associated with film boiling). Jpn Soc Mech Eng 35:589–598

    Google Scholar 

  12. Kandlikar SG, Steinke ME (2001) Contact angles of droplet during spread and recoil after impinging on a heated surface. Trans IChemE 79:491–498

    Article  Google Scholar 

  13. Mitrakusuma WH, Deendarlianto Kamal S et al (2015) Determining contact angle and spreading velocity of a droplet impacted hot solid surface. Appl Mech Mater 771:183–186. doi:10.4028/www.scientific.net/AMM.771.183

    Article  Google Scholar 

  14. Taylor JR (1997) An introduction to error analysis, the study of uncertainties in physical measurement, 2nd edn. University Science Books, Sausalito

    Google Scholar 

  15. Mitrakusuma WH, Deendarlianto Kamal S et al (2016) Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface. AIP Conf Proc 50002:50002–1–50002–8. doi:10.1063/1.4949305

    Google Scholar 

  16. McHale JP, Garimella SV (2010) Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int J Multiph Flow 36:249–260. doi:10.1016/j.ijmultiphaseflow.2009.12.004

    Article  Google Scholar 

  17. Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  18. Manglik RM, Jog MA, Gande SK, Ravi V (2013) Damped harmonic system modeling of post-impact drop-spread dynamics on a hydrophobic surface. Phys Fluids. doi:10.1063/1.4819243

    Google Scholar 

  19. Yang WJ (1975) Theory on vaporization and combustion of liquid drops of pure substances and binary mixtures on heated surfaces. Technical report 535, Institute of Space and Aeronautical Science, University of Tokyo

  20. Senda J, Kanda T, Ai-roub M, Farrell PV (1997) Modeling spray impingement considering fuel film formation on the wall. SAE Trans J Eng 106:37–51. doi:10.4271/970047

    Google Scholar 

  21. Akao F, Araki K, Mori S, Moriyama A (1980) Deformation behaviors of a liquid droplet impinging onto hot metal surface. Trans Iron Steel Inst Jpn 20:737–743

    Google Scholar 

  22. Healy WM, Hartley JG, Abdel-Khalik SI (2001) Surface wetting effects on the spreading of liquid droplets impacting a solid surface at low Weber numbers. Int J Heat Mass Transf 44:235–240. doi:10.1016/S0017-9310(00)00097-1

    Article  Google Scholar 

  23. Hidaka S, Yamashita A, Takata Y (2006) Effect of contact angle on wetting limit temperature. Heat Transf Res 35:513–526. doi:10.1002/htj.20128

    Article  Google Scholar 

Download references

Acknowledgements

This research is partly supported by National Competitive Research Program Grant of Directorate of Higher Education, Ministry of Research, Technology and Higher Educations Republic of Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deendarlianto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrakusuma, W.H., Kamal, S., Indarto et al. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers. Heat Mass Transfer 53, 3085–3097 (2017). https://doi.org/10.1007/s00231-017-2053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2053-0

Keywords

Navigation