Skip to main content
Log in

An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, effect of Al2O3 nanofluid on thermal performance of cylindrical heat pipe is investigated. An analytical model is employed to study the thermal performance of the heat pipe utilizing nanofluid and the predicted results are compared with the experimental results. A substantial change in the heat pipe thermal resistance, effective thermal conductivity and entropy generation of the heat pipe is observed when using Al2O3 nanofluid as a working fluid. It is found that entropy generation in the heat pipe system decreases when using a nanofluid due to the lower thermal resistance of the heat pipe which results in an improved thermal performance. It is shown that the proposed model is in reasonably good agreement with the experimental results and can be used as a fast technique to explore various features of thermal characteristics of the nanofluid based heat pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

h:

Convective heat transfer coefficient (W/m2 K)

hfg :

Latent heat of the working fluid (KJ/Kg)

k:

Thermal conductivity (W/mK)

keff :

Effective thermal conductivity of the wick (W/mK)

L:

Length of the heat pipe (m)

Lc :

Length of the condenser section (m)

La :

Length of the adiabatic section (m)

Le :

Length of the evaporator section (m)

P:

Pressure (Pa)

Q:

Input heat (W)

Rv :

Vapor core radius (m)

Ro :

Heat pipe’s outer radius (m)

Rw :

Heat pipe’s inner radius (m)

S:

Entropy (J/K)

Th :

Heat source temperature (K)

Tl :

Heat sink temperature (K)

v1 :

Vapor injection velocity (m/s)

v2 :

Vapor suction velocity (m/s)

ɛ :

Porosity of the wick (%)

ρ:

Density (kg/m3)

μ:

Dynamic viscosity (Pa.s)

l :

Liquid phase

v :

Vapor

nf :

Nanofluid

p :

Particle

s :

Solid

+:

Dimensionless quantity

References

  1. Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf 54:4410–4428

    Article  MATH  Google Scholar 

  2. Nikkam N, Ghanbarpour M, Saleemi M, Haghighi EB, Khodabandeh R, Muhammed M, Palm B, Toprak MS (2014) Experimental investigation on thermo-physical properties of copper/diethylene glycol nanofluids fabricated via microwave-assisted route. Appl Therm Eng 65:158–165

    Article  Google Scholar 

  3. Nikkam N, Saleemi M, Haghighi EB, Ghanbarpour M, Khodabandeh R, Muhammed M, Palm B, Toprak MS (2014) Fabrication, characterization and thermo- physical property evaluation of SiC Nanofluids for heat transfer applications. Nano Micro Lett 6:178–189

    Article  Google Scholar 

  4. Eastman JA, Choi SUS, Li S, Thompson LJ (1997) Enhanced thermal conductivity through the development of nanofluids. In: Proceedings of the symposium on nanophase and nanocomposite materials II, vol 457. Materials Research Society, Boston, USA, pp 3–11

  5. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  6. Haghighi EB, Utomo AT, Ghanbarpour M, Zavareh A, Poth H, Khodabandeh R, Pacek A, Palm BE (2014) Experimental study on convective heat transfer of nanofluids in turbulent flow: methods of comparison of their performance. Exp Therm Fluid Sci 57:378–387

    Article  Google Scholar 

  7. Utomo AT, Haghighi EB, Zavareh A, Ghanbarpourgeravi M, Poth H, Khodabandeh R, Palm B, Pacek AW (2014) The effect of nanoparticles on laminar heat transfer in a horizontal tube. Int J Heat Mass Transf 69:77–91

    Article  Google Scholar 

  8. Bi J, Vafai K, Christopher DM (2015) Heat transfer characteristics and CHF prediction in nanofluid boiling. Int J Heat Mass Transf 80:256–265

    Article  Google Scholar 

  9. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M (2015) Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Exp Therm Fluid Sci 66:213–220

    Article  Google Scholar 

  10. Hung YH, Teng TP, Lin BG (2013) Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp Therm Fluid Sci 44:504–511

    Article  Google Scholar 

  11. Putra N, Septiadi WN, Rahman H, Irwansyah R (2012) Thermal performance of screen mesh wick heat pipes with nanofluids. Exp Therm Fluid Sci 40:10–17

    Article  Google Scholar 

  12. Moraveji MK, Razvarz S (2012) Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance. Int Commun Heat Mass Transf 39(9):1444–1448

    Article  Google Scholar 

  13. Shafahi M, Bianco V, Vafai K, Manca O (2010) Thermal performance of flat-shaped heat pipes using nanofluids. Int J Heat Mass Transf 53:1438–1445

    Article  MATH  Google Scholar 

  14. Teng TP, Hsu HG, Mo HE, Chen CC (2010) Thermal efficiency of heat pipe with alumina nanofluid. J Alloys Compd 504S:380–384

    Article  Google Scholar 

  15. Buschmann HM (2013) Nanofluids in thermosyphons and heat pipes: overview of recent experiments and modelling approaches. Int J Therm Sci 72:1–17

    Article  Google Scholar 

  16. Shang FM, Liu DY, Xian HZ, Yang YP, Du XZ (2007) Flow and heat transfer characteristics of different forms of nanometer particles in oscillating heat pipe. J Chem Indust Eng 58:2200–2204

    Google Scholar 

  17. Liu ZH, Zhu QZ (2011) Application of aqueous nanofluids in a horizontal mesh heat pipe. Energ Convers Manage 52:292–300

    Article  Google Scholar 

  18. Wang GS, Song B, Liu ZH (2010) Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids. Exp Therm Fluid Sci 34:1415–1421

    Article  Google Scholar 

  19. Asirvatham LG, Nimmagadda R, Wongwises S (2013) Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. Int J Heat Mass Transf 60:201–209

    Article  Google Scholar 

  20. Do KH, Ha HJ, Jang SP (2010) Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. Int J Heat Mass Transf 53:5888–5894

    Article  Google Scholar 

  21. Huminic G, Huminic A (2011) Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids. Exp Therm Fluid Sci 35:550–557

    Article  MATH  Google Scholar 

  22. Naphon P, Assadamongkol P, Borirak T (2008) Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int Commun Heat Mass Transf 35:1316–1319

    Article  Google Scholar 

  23. Gunnasegaran P, Abdullah MZ, Shuaib NH (2013) Influence of nanofluid on heat transfer in a loop heat pipe. Int Commun Heat Mass Transf 47:82–91

    Article  Google Scholar 

  24. Zhu N, Vafai K (1999) Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non-Darcian transport-a closed form solution. Int J Heat Mass Transf 42:3405–3418

    Article  MATH  Google Scholar 

  25. Shafahi M, Bianco V, Vafai K, Manca O (2010) An investigation of the thermal performance of cylindrical heat pipes using nanofluids. Int J Heat Mass Transf 53:376–383

    Article  MATH  Google Scholar 

  26. Bejan A (1982) Entropy Generation Through Heat and Fluid Flow. Wiley, New York

    Google Scholar 

  27. Ghanbarpour M, Khodabandeh R (2015) Entropy generation analysis of cylindrical heat pipe using nanofluid. Thermochim Acta 610:37–46

    Article  Google Scholar 

  28. Park MK, Boo JH (2012) Thermal performance of a heat pipe with two dissimilar condensers for a medium-temperature thermal storage system. J Appl Sci Eng 15:123–129

    Google Scholar 

  29. Ghanbarpour M, Bitaraf Haghigi E, Khodabandeh R (2014) Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Therm Fluid Sci 53:227–235

    Article  Google Scholar 

  30. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS (2015) Thermal performance of inclined screen mesh heat pipes using silver nanofluid. Int Commun Heat Mass Transf 67:14–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vafai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbarpour, M., Khodabandeh, R. & Vafai, K. An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid. Heat Mass Transfer 53, 973–983 (2017). https://doi.org/10.1007/s00231-016-1871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1871-9

Keywords

Navigation