Skip to main content
Log in

Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Heat transfer area from channel inlet, m2

A i :

The specific heat transfer area from inlet, for i = 1 to 8

A sect :

Area of channel cross-section, m2

Bond :

Bond number

C d :

Distribution parameter

C p :

Specific heat capacity, kJ kg−1 K−1

d :

Channel diameter, mm

D :

Diameter, mm

d h :

Channel hydraulic diameter, mm

g :

Gravitational acceleration, m s−2

G :

Mass flux, kg m−2 s−1

G t :

Vapor and liquid total mass flux, Lb ft−2 h−1

H :

Channel depth, mm

h :

Specific enthalpy, kJ kg−1

h fg :

Latent heat of vaporization, kJ kg−1

h local :

Local heat transfer coefficient, kW m−2 K−1

h ovg :

The surface coefficient of heat transfer, kW m−2 K−1

J :

Volumetric flux

J L :

Superficial liquid velocity, m s−1

J g :

Superficial vapor velocity, m s−1

L :

Channel length, mm

l c :

Channel diameter, mm

\( \dot{m} \) :

Mass flow rate, kg s−1

P :

Pressure, kPa

\( \dot{q} \) :

Heat flux, kW m−2

\( \dot{Q}_{heater} \) :

Heater power, kW

\( \dot{Q}_{loss} \) :

Heat loss, kW

S :

Heated perimeter of channel, mm

T :

Temperature, K

V gj :

Drift velocity, m s−1

W :

Channel width, mm

Z :

Distance from the channel inlet, mm

Z i :

The specific distance from inlet, for i = 1 to 8

σ :

Surface tension, N m−1

ρ :

Density, kg m−3

λ:

Thermal conductivity, kW m−1 K−1

χ :

Vapour quality

α :

Void fraction

S slip :

Slip ratio

1/X tt :

Martinelli parameter

μ :

Viscosity, Pa s

Δρ:

Density difference between liquid and vapor, kg m−3

axial :

Axial direction

crit :

Critical value

cross :

Cross section

fluid:

Fluid

g :

Vapor

L :

Liquid

local :

Local

in :

Inlet

sat :

Saturation

sect:

Cross-section

W :

Wall

AR:

Aspect ratio

DAQ:

Data acquisition

ONB:

Onset of nucleate boiling

References

  1. Thome JR (Chapter 20) (2005) Two-phase flow and flow boiling in microchannels. In: Wolverine heat transfer engineering data book III. Switzerland

  2. Mehendale SS, Jacobi AM, Shah RK (2000) Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design. Appl Mech Rev 53:175–193

    Article  Google Scholar 

  3. Kandlikar SG, Grande WJ (2003) Evolution of microchannel flow passages—thermohydraulic performance and fabrication technology. Heat Transf Eng 24:3–17

    Article  Google Scholar 

  4. Cheng P, Wu HY, George JPHAB-C, Greene A, Young IC (2006) Mesoscale and microscale phase-change heat transfer. In: Advances in heat transfer. Elsevier, 39, pp 461–563

  5. Megahed A, Hassan I (2009) Two-phase pressure drop and flow visualization of FC-72 in a silicon micro-channel heat sink. Int J Heat Fluid Flow 30:1171–1182

    Article  Google Scholar 

  6. Xu JL, Cheng P, Zhao TS (1999) Gas–liquid two-phase flow regimes in rectangular channels with mini/micro gaps. Int J Multiph Flow 25:411–432

    Article  MATH  Google Scholar 

  7. Ichikawa N, Hosokawa K, Maeda R (2004) Interface motion of capillary-driven flow in rectangular microchannel. J Colloid Interface Sci 280:155–164

    Article  Google Scholar 

  8. Barber J, Brutin D, Sefiane K, Tadrist L (2010) Bubble confinement in flow boiling of FC-72 in a “rectangular” microchannel of high aspect ratio. Exp Therm Fluid Sci 34:1375–1388

    Article  Google Scholar 

  9. Wu J, Shi M, Chen Y, Li X (2010) Visualization study of steam condensation in wide rectangular silicon microchannels. Int J Therm Sci 49:922–930

    Article  Google Scholar 

  10. Jones OC, Zuber N (1975) The interrelation between void fraction fluctuations and flow patterns in two-phase flow. Int J Multiph Flow 2:273–306

    Article  Google Scholar 

  11. Troniewski L, Ulbrich R (1984) Two-phase gas–liquid flow in rectangular channels. Chem Eng Sci 39:751–765

    Article  Google Scholar 

  12. Wambsganss MW, Jendrzejczyk JA, France DM (1991) Two-phase flow patterns and transitions in a small, horizontal, rectangular channel. Int J Multiph Flow 17:327–342

    Article  MATH  Google Scholar 

  13. Wilmarth T, Ishii M (1994) Two-phase flow regimes in narrow rectangular vertical and horizontal channels. Int J Heat Mass Transf 37:1749–1758

    Article  Google Scholar 

  14. Wang J, Huang Y, Wang Y (2011) Photographic study on two-phase flow patterns of water in a single-side heated narrow rectangular channel. J Eng Gas Turbines Power 133(5):052907 (5 pages)

    Article  Google Scholar 

  15. Chen T, Garimella SV (2006) Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink. Int J Multiph Flow 32:957–971

    Article  MATH  Google Scholar 

  16. Sobierska E, Kulenovic R, Mertz R (2007) Heat transfer mechanism and flow pattern during flow boiling of water in a vertical narrow channel—experimental results. Int J Therm Sci 46:1172–1181

    Article  Google Scholar 

  17. Kandlikar SG, Steinke ME, Tian ME, Cambell LA (2001) High-speed photographic observation of flow boiling water in parallel mini-channels. In: Proceedings of national heat transfer conference, Anaheim, CA, 10-112 June

  18. Revellin R, Dupont V, Ursenbacher T, Thome JR, Zun I (2006) Characterization of diabatic two-phase flows in microchannels: flow parameter results for R-134a in a 0.5 mm channel. Int J Multiph Flow 32(7):755–774

    Article  MATH  Google Scholar 

  19. Hoster ER (1968) Flow patterns in high pressure two-phase (steam-water)flow with heat addition. AIChE Symp Ser 64:54–66

    Google Scholar 

  20. Qin S, Huijin W, Hongding H (1990) Gas–liquid two phase flow patterns in thin rectangular channels. J Chem Ind Eng 6:745–753 (China)

    Google Scholar 

  21. Xu J (1999) Experimental study on gas–liquid two-phase flow regimes in rectangular channels with mini gaps. Int J Heat Fluid Flow 20:422–428

    Article  Google Scholar 

  22. Mishima K, Hibiki T, Nishibara H (1993) Some characteristics of gas–liquid flow in narrow rectangular ducts. Int J Multiph Flow 19:115–124

    Article  MATH  Google Scholar 

  23. Taitel Y, Bomea D, Dukler AE (1980) Modeling flow pattern transitions for steady upward gas–liquid flow in vertical tubes. AIChE J 26:345–354

    Article  Google Scholar 

  24. Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transfer 27(5):723–737

    Article  Google Scholar 

  25. Hibiki T, Mishima K (2001) Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels. Nucl Eng Des 203:117–131

    Article  Google Scholar 

  26. Ishii M (1977) One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Report, No. 77-47

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Li, G. & Tao, L. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side. Heat Mass Transfer 52, 1343–1357 (2016). https://doi.org/10.1007/s00231-015-1645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1645-9

Keywords

Navigation