Skip to main content
Log in

Heat transfer partitioning model of film boiling of particle cluster in a liquid pool: implementation in a CFD code

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present work an effective heat transfer partitioning model of three phase (particles, liquid and vapour) flow and thermal interaction have been developed by a multi-fluid approach under film boiling condition. The in-house multiphase flow code is based on finite volume method of discretization and SIMPLE-based pressure correction algorithm. From consideration of mass, momentum and energy balance across the liquid–vapour interface, the vapour bubble generated from the vapour film have been modeled and incorporated in the code. Different interaction terms between each phase are incorporated depending upon the flow regime. The code is validated with in-house and available experimental results. Finally the effect of relevant parameters on void generation under film boiling condition of particles is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Surface area of dispersed phase

c :

Specific heat

C D :

Drag coefficient

C L :

Lift coefficient

d :

Diameter of dispersed phase

\(\vec{F}_{D}\) :

Drag force

\(\vec{F}_{L}\) :

Lift force

\(\vec{F}_{a}\) :

Added mass

\(\vec{F}_{sp}\) :

Solid pressure

g :

Acceleration due to gravity

J :

Phase change rate

P :

Pressure

T :

Temperature

t :

Time

Re:

Reynolds number

Pr:

Prandtl number

Nu:

Nusselt number

\(\vec{v}\) :

Velocity

w :

Regime weighting parameter

α :

Void fraction = θ v /(θ v  + θ l )

θ :

Volume fraction

µ:

Viscosity

ρ:

Density

γ :

Surface tension

σ :

Boltzmann constant

drop :

Liquid drop

film :

Vapour film

vap :

Vapour

c :

Convection

ci :

Centre to interface

dropvap :

Drop to vapour

filmvap :

Film to vapour

ic :

Interface to centre

il :

Interface to liquid

int :

Interface

liqbub :

Liquid to bubble

l :

Liquid

p :

Particles

pi :

Particle to interface

pv :

Particle to vapour

v :

Vapour

r :

Radiation

References

  1. Ishii M, Hibiki T (1975) Thermo fluid dynamics of two-phase flow. Eyrolles, Paris

    Google Scholar 

  2. Lakehal D (2002) On the modelling of multiphase turbulent flows for environmental and hydrodynamic applications. Int J Multiph Flow 28:823–863

    Article  MATH  Google Scholar 

  3. Collier JG (1981) Convective boiling and condensation. McGraw-Hill, New York

    Google Scholar 

  4. Yagov VV (2009) Nucleate boiling heat transfer: possibilities and limitations of theoretical analysis. Heat Mass Transf 45:881–892

    Article  Google Scholar 

  5. Zuber N (1963) Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. Int J Heat Mass Transf 6:53–60

    Article  Google Scholar 

  6. Davis EJ, Anderson GH (1966) The incipience of nucleate boiling in forced convection flow. AIChE J 12:774–780

    Article  Google Scholar 

  7. Yuan MH, Yang YH, Li TS, Hu ZH (2008) Numerical simulation of film boiling on a sphere with a volume of fluid interface tracking method. Int J Heat Mass Transf 51:1646–1657

    Article  MATH  Google Scholar 

  8. Berenson PJ (1961) Film-boiling heat transfer from a horizontal surface. J Heat Transf 83:351–356

    Article  Google Scholar 

  9. Bromley LA (1950) Heat transfer in stable film boiling. Chem Eng Prog 46:221–227

    Google Scholar 

  10. Epstein M, Hauser GM (1980) Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder. Int J Heat Mass Transf 23:179–189

    Article  MATH  Google Scholar 

  11. Liu C, Theofanous TG (1995) Film boiling on spheres in single- and two-phase flows, part 2: a theoretical study. In: National heat transfer conference, Portland

  12. Kolev NI (1998) Film boiling on vertical plates and spheres. Exp Therm Fluid Sci 18:97–115

    Article  MathSciNet  Google Scholar 

  13. Dhir VK, Purohit GP (1978) Subcooled film-boiling heat transfer from spheres. Nucl Eng Des 47:49–66

    Article  Google Scholar 

  14. Frederking THK (1963) Laminar two phase boundary layers in natural convection film boiling. J Appl Math Phys 14:207–218

    Article  Google Scholar 

  15. Nishio S, Ohtake H (1993) Vapor-film-unit model and heat transfer correlation for natural-convection film boiling with wave motion under subcooled conditions. Int J Heat Mass Transf 36:2541–2552

    Article  Google Scholar 

  16. Meduri PK, Warrier GR, Dhir VK (2009) Wall heat flux partitioning during subcooled forced flow film boiling of water on a vertical surface. Int J Heat Mass Transf 52:3534–3546

    Article  Google Scholar 

  17. Pohlner G, Vujic Z, Bürger M, Lohnert G (2006) Simulation of melt jet breakup and debris bed formation in water pools with IKEJET/IKEMIX. Nucl Eng Des 206:2026–2048

    Article  Google Scholar 

  18. Meignen R, Picchi S, Lamome J, Raverdy B, Escobar SC, Nicaise G (2014) The challenge of modeling fuel–coolant interaction: part I-premixing. Nucl Eng Des 280:511–527

    Article  Google Scholar 

  19. Mahapatra PS, Manna NK, Ghosh K (2014) Analysis of entropy generation during convective quenching of cluster of balls. Numer Heat Transf A 66:689–711

    Article  Google Scholar 

  20. Meignen R, Magallon D (2005) Comparative review of FCI computer models used in the OECD-SERENA program. In: Proceedings of ICAPP’05, Seoul, Korea

  21. Angelini S, Yuen WW, Theofanous TG (1995) Premixing-related behavior of steam explosions. Nucl Eng Des 155:115–157

    Article  Google Scholar 

  22. Brayer C, Berthoud G (1997) First vapor explosion calculations performed with MC3D thermal-hydraulic code. In: OECD/CSNI specialists meeting on fuel–coolant interactions, Tokai-mura, Japan

  23. Kalteh M, Abbassi A, Saffar-Avval M, Harting J (2011) Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int J Heat Fluid Flow 32:107–116

    Article  Google Scholar 

  24. Fard MH, Esfahany MN, Talaie MR (2010) Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int Commun Heat Mass Transf 37:91–97

    Article  Google Scholar 

  25. Fletcher DF, Witt PJ (1996) Numerical studies of multiphase mixing with application to small scale experiments. Nucl Eng Des 166:135–145

    Article  Google Scholar 

  26. Wachem BGMV, Almstedt AE (2003) Methods for multiphase computational fluid dynamics. Chem Eng J 96:81–98

    Article  Google Scholar 

  27. Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flow. AIChE J 25:843–855

    Article  Google Scholar 

  28. Cheng N-S (2009) Comparison of formulas for drag coefficient and settling velocity of spherical particles. Powder Technol 189:395–398

    Article  Google Scholar 

  29. Mazzei L, Lettieri P (2007) A drag force closure for uniformly dispersed fluidized suspensions. Chem Eng Sci 62:6129–6142

    Article  Google Scholar 

  30. Schiller L, Naumann Z (1935) A drag coefficient correlation. Z Ver Deutsch Ing 77:318–320

    Google Scholar 

  31. Drew D, Lahey RT (1979) Application of general constitutive principles to the derivation of multidimensional two phase flow equations. Int J Multiph Flow 5:243–264

    Article  MATH  Google Scholar 

  32. Leskovar M, Mavko B (2002) Simulation of the isothermal QUEOS steam explosion premixing experiment Q08. J Mech Eng 48:449–458

    Google Scholar 

  33. Bouillard JX, Lyczkowski RW, Gidaspow D (1989) Porosity distributions in a fluidized bed with an immersed obstacle. AIChE J 35:24–31

    Article  Google Scholar 

  34. Smith KM, Davidson MR, Lawson NJ (2000) Dispersion of neutrally buoyant solids falling vertically into stationary liquid and horizontal channel flow. Comput Fluids 29:369–384

    Article  Google Scholar 

  35. Freud R, Harari R, Sher E (2009) Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion. Nucl Eng Des 239:722–727

    Article  Google Scholar 

  36. Urban BJ, Avedisian CT, Tsang W (2006) The film boiling reactor: a new environment for chemical processing. AIChE J 52:2582–2595

    Article  Google Scholar 

  37. Berthoud G, Valette M (1994) Development of a multidimensional model for the premixing phase of a fuel coolant interaction. Nucl Eng Des 149:409–418

    Article  Google Scholar 

  38. Ranz WE, Marshall WR (1952) Evaporation from drops: part I and II. Chem Eng Prog 48(141–146):173–180

    Google Scholar 

  39. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, DC

  40. Angelini S, Theofanous TG, Yuen WW (1997) The mixing of particle clouds plunging into water. Nucl Eng Des 177:285–301

    Article  MATH  Google Scholar 

  41. Davydov MV, Melikhov VI, Melikhov OI, Parfenov IV (2000) Validation of VAPEX code on MAGICO and QUEOS tests. Nuclear Energy in Central Europe 2000, Golf Hotel, Bled, Slovenia

  42. Mahapatra PS, Manna NK, Ghosh K (2013) Hydrodynamic and thermal interactions of a cluster of solid particles in a pool of liquid of different Prandtl numbers using two-fluid model. Heat Mass Transf 49:1659–1679

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this work from Bhabha Atomic Research Centre (BARC), India, and Council of Science and Industrial Research (CSIR), India is gratefully acknowledged. The first author acknowledges the help and support of Mr. Souvick Chatterjee and Mr. Mithun Das to carry out the experiments. The second author acknowledges also the help and support of Renaud Meignen, IRSN, France, particularly in understanding the film boiling. The authors also acknowledge the encouragement and suggestions of Deb Mukhopadhyay of BARC for carrying out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, P.S., Ghosh, K. & Manna, N.K. Heat transfer partitioning model of film boiling of particle cluster in a liquid pool: implementation in a CFD code. Heat Mass Transfer 51, 1149–1166 (2015). https://doi.org/10.1007/s00231-014-1486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1486-y

Keywords

Navigation