Skip to main content
Log in

Dynamic heat and mass transfer modeling and control in carbon dioxide reactive absorption process

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A dynamic model has been developed for modeling of carbon dioxide reactive absorption. Mass transfers of the species were considered in both directions. The heat and mass transfer differential equations, were solved using the method of lines. The experiments were carried out to evaluate the model perditions, using an absorption pilot plant. A comparison between the experimental data and the simulation results proves the good predictivity of the presented model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Specific packing surface (m2/m3)

A :

Cross-sectional area (m2)

C :

Molar concentration (mol/m3)

C p :

Heat capacity (j/m3.k)

CR :

Carbonation ratio (–)

E :

Specific energy holdup (J/m)

D :

Diffusion coefficient (m2/s)

G :

Gas phase molar flow rate (mol/s)

h :

Molar enthalpy (J/mol)

Δ H :

Heat of reaction (J/mol)

K :

Vapor–liquid equilibrium constant (–)

k :

Reaction rate constant (lit/mol.s)

k L :

Mass transfer coefficient (m/s)

L :

Liquid phase molar flow rate (mol/s)

M :

Film conversion parameter (–)

N :

Interfacial molar flux (mol/m2.s)

q :

Heat flux (J/m2.s)

R :

Reaction rate (mol/m3.s)

T :

Temperature (K)

x :

Liquid phase mole fraction (–)

y :

Gas phase mole fraction (–)

Z :

Axial co-ordinate (m)

δ :

Film thickness (m)

ϕ :

Specific molar holdup (mol/m)

φ :

Volumetric holdup (m3/m3)

λ :

Thermal conductivity (W/m.K)

G :

Gas phase

L :

Liquid phase

i :

Component index

j :

Segment index

s :

Component index

b :

Bulk

f :

Film

g :

Gas

l :

Liquid

I :

Interface

References

  1. Kohl A, Nielsen R (1997) Gas purification, 5th edn. Gulf Publishing Company, Houston

    Google Scholar 

  2. Danckwerts PV (1970) Gas-liquid reactions. McGraw-Hill, New York

    Google Scholar 

  3. Taylor R, Krishna R (1993) Multicomponent mass transfer. Wiley, New York

    Google Scholar 

  4. Stankiewicz A, Moulijn J (2004) Re-engineering the chemical processing plant. Marcel Dekker Inc, New York

    Google Scholar 

  5. Sorel E (1893) La rectification de lalcool. Gauthiers-Villaisetfils, Paris

    Google Scholar 

  6. Bradley KJ, Andre H (1972) A dynamic analysis of a packed gas absorber. Can J Chem Eng 50:528–533

    Article  Google Scholar 

  7. Brettschneider O, Thiele R, Faber R, Thielert H, Wozny G (2004) Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3–CO2–H2S–NaOH–H2O. Sep Purif Technol 39:139–159

    Article  Google Scholar 

  8. Kenig EY, Wiesner U, Groak A (1997) Modeling of reactive absorption using the Maxwell Stefan equation. Ind Eng Chem Res 36:4325–4334

    Article  Google Scholar 

  9. Kenig EY, Schneider R, Gorak A (1999) Rigorous dynamic modelling of complex reactive absorption processes. Chem Eng Sci 54:5195–5203

    Article  Google Scholar 

  10. Kenig EY, Kucka L, Gorak A (2003) Rigorous modeling of reactive absorption processes. Chem Eng Technol 26:631–646

    Article  Google Scholar 

  11. Ghaemi A, Shahhosseini Sh, Ghannadi Maragheh M (2009) Nonequilibrium modeling of reactive absorption processes. Chem Eng Commun 196:1076–1089

    Article  Google Scholar 

  12. Ghaemi A, Torab-Mostaedi M, Ghannadi Maragheh M (2011) Kinetics and absorption rate of CO2 into partially carbonated ammonia solutions. Chem Eng Commun 198:1169–1181

    Article  Google Scholar 

  13. Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R (2003) Kinetics of reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous MEA solutions. Chem Eng Sci 58:5195–5210

    Article  Google Scholar 

  14. Yeh AC, Hsunling B (1999) Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Sci Total Environ 228:121–133

    Article  Google Scholar 

  15. Navaza JM, Gomez D, Dolores M, Rubia L (2009) Removal process of CO2 using MDEA aqueous solutions in a bubble column reactor. Chem Eng J 146:184–188

    Article  Google Scholar 

  16. Rangawala HA, Morrell BR, Mather AE, Otto FD (1992) Absorption of CO2 into aqueous tertiary amine/MEA solutions. Can J Chem Eng 70:482–490

    Article  Google Scholar 

  17. Shen J, Yang Y, Maa J (1999) Promotion mechanism for CO2 absorption into partially carbonated NH3 solutions. J Chem Eng Jpn 32:378–381

    Article  Google Scholar 

  18. Kenig EY, Schneider R, Gorak A (2001) Multicomponent unsteady-state film model: a general analytical solution to the linearized diffusion–reaction problem. Chem Eng J 83:85–94

    Article  Google Scholar 

  19. Krop J (1999) New approach to simplify the equation for the excess gibbs free energy of aqueous solution of electrolytes applied to the modeling of the NH3–CO2–H2O vapor–liquid equilibria. J Fluid Ph Equilib 163:209–229

    Article  Google Scholar 

  20. Zemaitis J, Clark DM, Scrivner NC (1986) Handbook of aqueous electrolyte thermodynamics. AIChE, New York

    Book  Google Scholar 

  21. Billet R, Schultes M (1993) Predicting mass transfer in packed columns. Chem Eng Technol 16:1–9

    Article  Google Scholar 

  22. Reid R, Prausnits J, Poling B (1987) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  23. Onda K, Takeuch H, Okumoto Y (1968) Transfer coefficient between gas and liquid phase in packed columns. J Eng Jpn 1:56–62

    Article  Google Scholar 

  24. Siddiqi M, Lucas K (1986) Correlations for prediction of diffusion in liquids. Can J Chem Eng 64:839–843

    Article  Google Scholar 

  25. Olanrewaju MJ, Al-Arfaj MA (2005) Development and application of linear process model in estimation and control of reactive distillation. Comput Chem Eng 30:147–157

    Article  Google Scholar 

  26. Coughanowr DR, Koppel LB (1965) Process systems analysis and control. McGraw-Hill, New York

    Google Scholar 

  27. Stephanopoulos G (1984) Chemical process control an introduction to theory and practice. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Ghaemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niknafs, H., Ghaemi, A. & Shahhosseini, S. Dynamic heat and mass transfer modeling and control in carbon dioxide reactive absorption process. Heat Mass Transfer 51, 1131–1140 (2015). https://doi.org/10.1007/s00231-014-1484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1484-0

Keywords

Navigation