Skip to main content
Log in

Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

b :

Height of duct (m)

c p :

Specific heat capacity of fluid [J/(kg K)]

d :

Direction of descent, defined by Eq. 6

k :

Thermal conductivity [W/(m K)]

J :

Objective function, defined by Eq. 3

l :

Length of duct (m)

nx :

Numbers of control volume in x direction

nx :

Numbers of control volume in y direction

M :

Number of measured data

P :

Heater input power (W)

q :

Heat flux (W/m2)

R :

Resistance (Ω)

Re :

Reynolds number

RTD:

Resistance temperature detectors

T :

Temperature (K)

T in :

Inlet temperature (K)

u :

Velocity in x coordinate (m/s)

V :

Voltage

x, y :

Cartesian coordinate

α :

Thermal diffusivity (k/ρcp) (m2/s)

β :

Search step-size, defined by Eq. 8

δ :

Dirac delta function

ε :

Convergence criteria

ε H :

Eddy thermal diffusivity (m2/s)

γ :

Conjugation coefficient, defined by Eq. 7

λ :

Lagrange multiplier

ρ :

Density of fluid (kg/m3)

σ :

Standard deviation of measurements

σ P , σ V and σ R :

Uncertainties in power, voltage and resistance respectively

ξ :

New space variable converting final value problem to initial value

n :

Iteration number

m :

Measurement location for a single sensor

References

  1. Huang CH, Tsai CC (1998) An inverse heat conduction problem of estimating boundary fluxes in an irregular domain with conjugate gradient method. Heat Mass Transf 34:47–54

    Article  Google Scholar 

  2. Zueco J, Alhama F, Fernández CFG (2005) Numerical nonlinear inverse problem of determining wall heat flux. Heat Mass Transf 41:411–418

    Article  Google Scholar 

  3. Pourshaghaghy A, Kowsary F, Behbahaninia A (2007) Comparison of four different versions of the variable metric method for solving inverse heat conduction problems. Heat Mass Transf 43:285–294

    Article  Google Scholar 

  4. Parwani AK, Talukdar P, Subbarao PMV (2013) Performance evaluation of hybrid differential evolution approach for estimation of the strength of a heat source in a radiatively participating medium. Int J Heat Mass Transf 56:552–560

    Article  Google Scholar 

  5. Parwani AK, Talukdar P, Subbarao PMV (2013) Simultaneous estimation of strength and position of a heat source in a participating medium using DE algorithm. J Quant Spectrosc Radiat Transf (in press). doi:10.1016/j.jqsrt.2013.05.006

  6. Das R, Mallick A, Ooi KT (2013) A fin design employing an inverse approach using simplex search method. Heat Mass Transf 49:1029–1038

    Article  Google Scholar 

  7. Atchonouglo K, Banna K, Vallée C, Dupré JC (2008) Inverse transient heat conduction problems and identification of thermal parameters. Heat Mass Transf 45:23–29

    Article  Google Scholar 

  8. Mehta RC, Tiwari SB (2007) Controlled random search technique for estimation of convective heat transfer coefficient. Heat Mass Transf 43:1171–1177

    Article  Google Scholar 

  9. Huang CH (2002) An inverse geometry problem in estimating frost growth on an evaporating tube. Heat Mass Transf 38:615–623

    Article  Google Scholar 

  10. Moutsoglou A (1990) Solution of an elliptic inverse convection problem using a whole domain regularization technique. AIAA J Thermophys Heat Transf 4(3):341–349

    Article  Google Scholar 

  11. Huang H, Ozisik MN (1992) Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate duct. Numer Heat Transf Part A 21(1):55–70

    Article  Google Scholar 

  12. Machado HA, Orlande HRB (1997) Inverse analysis for estimating the timewise and spacewise variation of the heat flux in a parallel plate channel. Int J Numer Methods Heat Fluid Flow 7:696–710

    Article  MATH  Google Scholar 

  13. Li HY, Yan WM (1999) Estimation of wall heat flux in an inverse convection problem. J Thermophys Heat Transf 13(3):394–396

    Article  Google Scholar 

  14. Li HY, Yan WM (2000) Inverse convection problem for determining wall heat flux in annular duct flow. J Heat Transf 122(3):460–464

    Article  Google Scholar 

  15. Park HM, Lee JH (1998) A method of solving inverse convection problems by means of mode reduction. Chem Eng Sci 53(9):1731–1744

    Article  Google Scholar 

  16. Raghunath R (1993) Determining entrance conditions from downstream measurements. Int Commun Heat Mass Transf 20:173–183

    Article  Google Scholar 

  17. Hong YK, Baek SW (2006) Inverse analysis for estimating the unsteady inlet temperature distribution for two-phase laminar flow in a channel. Int J Heat Mass Transf 49:1137–1147

    Article  MATH  Google Scholar 

  18. Bokar JC, Ozisik MN (1995) An inverse analysis for estimating the time-varying inlet temperature in laminar flow inside a parallel plate duct. Int J Heat Mass Transf 38:39–45

    Article  MATH  Google Scholar 

  19. Parwani AK, Talukdar P, Subbarao PMV (2012) Estimation of inlet temperature of a developing fluid flow in parallel plate channel. Int J Therm Sci 57:126–134

    Article  Google Scholar 

  20. Parwani AK, Talukdar P, Subbarao PMV (2014) Estimation of transient boundary flux for developing flow in parallel plate channel. Int J Numer Methods Heat Fluid Flow 24(3):522–544

  21. Parwani AK, Talukdar P, Subbarao PMV (2014) A hybrid approach using CGM and DE algorithm for estimation of boundary heat flux in a parallel plate channel. Numer Heat Transf Part A 65:461–481

  22. Lin TW, Yan WM, Li HY (2007) Inverse problem of unsteady conjugated forced convection in parallel plate channels. Int J Heat Mass Transf 51:993–1002

    Article  Google Scholar 

  23. Liu FB, Ozisik MN (1996) Inverse analysis of transient turbulent forced convection inside parallel plate ducts. Int J Heat Mass Transf 39(12):2615–2618

    Article  MATH  Google Scholar 

  24. Li Y, Yan WM (2003) Identification of wall heat flux for turbulent forced convection by inverse analysis. Int J Heat Mass Transf 46:1041–1048

    Article  MATH  Google Scholar 

  25. Su J, Lopes AB, Silva Neto AJ (2000) Estimation of unknown wall heat flux in turbulent circular pipe flow. Int Commun Heat Mass Transf 27:945–954

    Article  Google Scholar 

  26. Su J, Silva Neto AJ (2001) Simultaneous estimation of inlet temperature and wall heat flux in turbulent circular pipe flow. Numer Heat Transf Part A 40:751–766

    Article  Google Scholar 

  27. Chen CK, Wu LW, Yang YT (2006) Comparison of whole-domain and sequential algorithms for function specification method in the inverse heat transfer problem of laminar convective pipe flow. Numer Heat Transf Part A 50(10):927–947

    Article  Google Scholar 

  28. FLUENT, User’s Guide 6.3, Fluent Inc., USA

  29. Ozisik MN, Orlande HRB (2000) Inverse heat transfer: fundamentals and applications. Taylor and Francis, New York

    Google Scholar 

  30. Hunt IA, Joubert PN (1977) Turbulent flow in a rectangular duct. In: Proceedings of the 6th Australasian hydraulics and fluid mechanics conference Adelaide, Australia, pp 403–406

  31. TESTO India Private Limited, www.testo.in

  32. Holman JP (1994) Experimental methods for engineers, 6th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabal Talukdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parwani, A.K., Talukdar, P. & Subbarao, P.M.V. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow. Heat Mass Transfer 51, 411–421 (2015). https://doi.org/10.1007/s00231-014-1421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1421-2

Keywords

Navigation