Skip to main content
Log in

Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Heat pipes are widely used for the thermal control of electronic devices due to their capability of heat transport at high rate over considerable distance with small temperature drop. This study investigates the experimental performance of the heat pipe using the combination of copper nanofluids and the different types of aqueous solution of long chain alcohols. An experimental system is set up to measure the temperature distribution of heat pipes along the surface to determine the thermal efficiency and the thermal resistance of different working fluids computed. The working fluids used in this analysis illustrate certain improvement in the metrics over the conventional working fluids, pertaining to the heat transport limitations. The experimental results display higher efficiency and lower thermal resistance of the heat pipe when compared with the conventional working fluids like water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chi SW (1976) Heat pipe theory and practice: a sourcebook. McGraw-Hill, New York

    Google Scholar 

  2. Cao Y, Faghri A (1991) Transient multidimensional analysis of nonconventional heat pipes with uniform and nonuniform heat distributions. J Heat Transf 113:995–1002

    Article  Google Scholar 

  3. Mughal MP, Plumb OA (1996) An experimental study of boiling on a wicked surface. Int J Heat Mass Transf 39:771–777

    Article  Google Scholar 

  4. Brautsch A, Kew PA (2002) Examination and visualization of heat transfer processes during evaporation in capillary porous structures. Appl Therm Eng 22:815–824

    Article  Google Scholar 

  5. Vochten R, Petre G (1973) Study of the heat of reversible adsorption at the air–solution interface II. Experimental determination of the heat of reversible adsorption of some alcohols. J Coll Interface Sci 42:320–327

    Article  Google Scholar 

  6. Villers D, Platten JK (1998) Temperature dependence of the interfacial tension between water and long-chain alcohols. J Phys Chem 92:4023–4024

    Article  Google Scholar 

  7. Oron A, Rosenau P (1994) On a nonlinear thermo capillary effect in thin liquid layers. J Fluid Mech 273:361–374

    Article  MATH  MathSciNet  Google Scholar 

  8. Senthilkumar R, Vaidyanathan S, Sivaraman B (2012) Comparative study on heat pipe performance using aqueous solutions of alcohols. Heat Mass Transf 48:2033–2040

    Article  Google Scholar 

  9. Loh CK, Harris E, Chou DJ (2005) Comparative study of heat pipes performances in different orientations. In: Semiconductor thermal measurement and management symposium, pp 191–195

  10. Choi SUS (1994) Enhancing thermal conductivity of fluids with nano-particles. ASME-FED 231:99–105

    Google Scholar 

  11. Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH (2004) Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett 58:1461–1465

    Article  Google Scholar 

  12. Naphon P, Thongkum D, Assadamongkol P (2009) Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures. Energy Convers Manag 50:772–776

    Article  Google Scholar 

  13. Kang S, Wei W, Tsai S, Huang C (2009) Experimental investigation of nanofluids on sintered heat pipe thermal performance. Appl Therm Eng 29:973–979

    Article  Google Scholar 

  14. Wang G-S, Song B, Liu Z-H (2010) Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids. Exp Therm Fluid Sci 34:1415–1421

    Article  Google Scholar 

  15. Moraveji MK, Razvarz S (2012) Experimental investigation of aluminium oxide nanofluid on heat pipe thermal performance. Int Commun Heat Mass Transf 39:1444–1448

    Article  Google Scholar 

  16. Do KH, Ha HJ, Jang SP (2010) Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. Int J Heat Mass Transf 53:5888–5894

    Article  Google Scholar 

  17. Liu ZH, Zhu QZ (2011) Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Convers Manag 52:292–300

    Article  Google Scholar 

  18. Liu Z-H, Li Y-Y (2012) A new frontier of nanofluid research—application of nanofluids in heat pipes. Int J Heat Mass Transf 55:6786–6797

    Article  Google Scholar 

  19. Hung Y-H, Teng T-P, Lin B-G (2013) Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp Therm Fluid Sci 44:504–511

    Article  Google Scholar 

  20. Naphon P, Assadamongkol P, Borirak T (2008) Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int Commun Heat Mass Transf 35:1316–1319

    Article  Google Scholar 

  21. Zhang N (2001) Innovative heat pipe systems using a new working fluid. Int Commun Heat Mass Transf 28:1025–1033

    Article  Google Scholar 

  22. Liu ZH, Yang XF, Guo GL (2007) Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon. J Appl Phys 102:013526-1–013526-8

    Google Scholar 

  23. Hopkins R, Faghri A, Khrustalev D (1999) Flat miniature heat pipes with micro capillary grooves. J Heat Transf 121:102–109

    Article  Google Scholar 

  24. Yang XF, Liu Z, Zhao J (2008) Heat transfer performance of a horizontal microgrooved heat pipe using CuO nanofluid. J Micromech Microeng 18:035038-1–035038-8

    Google Scholar 

  25. Kim HD, Kim J, Kim MH (2007) Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int J Multiph Flow 33:691–709

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the authorities of Annamalai University for providing the necessary facilities in order to accomplish this piece of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil Kumar, R., Vaidyanathan, S. & Sivaraman, B. Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes. Heat Mass Transfer 51, 181–193 (2015). https://doi.org/10.1007/s00231-014-1411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1411-4

Keywords

Navigation