Skip to main content
Log in

Quasi-abelian group as automorphism group of Riemann surfaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Conformal/anticonformal actions of the quasi-abelian group \(QA_{n}\) of order \(2^n\), for \(n\ge 4\), on closed Riemann surfaces, pseudo-real Riemann surfaces and closed Klein surfaces are considered. We obtain several consequences, such as the solution of the minimum genus problem for the \(QA_n\)-actions, and for each of these actions, we study the topological rigidity action problem. In the case of pseudo-real Riemann surfaces, attention was typically restricted to group actions that admit anticonformal elements. In this paper, we consider two cases: either \(QA_n\) has anticonformal elements or only contains conformal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Arbo, M., Benkowski, K., Coate, B., Nordstrom, H., Peterson, C., Wootton, A.: The genus level of a group. Involve. 2(3), 323–340 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bagiński, C., Gromadzki, G., Hidalgo, R.A.: On purely non-free finite actions of abelian groups on compact surfaces. Arch. Math. 109(4), 311–321 (2017)

    Article  MathSciNet  Google Scholar 

  3. Behn, A., Rojas, A.M., Tello-Carrera, M.: A SAGE package for \(n\)-gonal equisymmetric stratification of \(\cal{M} _g\). Exp. Math. 32(1), 54–69 (2020)

    Article  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993). J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  5. Breuer, T.: Characters and Automorphism Groups of Compact Riemann Surfaces. London Mathematical Society Lecture Note Series 280, Cambridge University Press, Cambridge, (2000)

  6. Broughton, S.A.: Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 69, 233–270 (1990)

    Article  MathSciNet  Google Scholar 

  7. Broughton, S. A., Wootton, A.: Cyclic \(n\)-gonal surfaces, arXiv:1003.3262pdf

  8. Bujalance, E.: Normal N.E.C. signatures. Illinois J. Math. 26(3), 519–530 (1982)

    Article  MathSciNet  Google Scholar 

  9. Bujalance, E.: Cyclic groups of automorphisms of compact nonorientable Klein surface without boundary. Pacific J. Math. 109(2), 279–289 (1983)

    Article  MathSciNet  Google Scholar 

  10. Bujalance, E., Cirre, F.J., Conder, M.D.E.: Bounds on the orders of groups of automorphisms of a pseudo-real surfaces of given genus. J. Lond. Math. Soc. 101(2), 877–906 (2020)

    Article  MathSciNet  Google Scholar 

  11. Bujalance, E., Etayo, J.J., Gamboa, J.M., Gromadzki, G.: Automorphism Groups of Compact Bordered Klein Surfaces, A Combinatorial Approach. Lecture Notes in Mathematics, vol. 1439. Springer-Verlag, Berlin (1990)

  12. Conder, M.D.E.: https://www.math.auckland.ac.nz/~conder/StrongSymmGenusSmallGroups127.txt

  13. Conder, M.D.E., Lo, S.: The pseudo-real genus of a group. J. Algebra 561, 149–162 (2020)

    Article  MathSciNet  Google Scholar 

  14. Diestel, R.: Graph Theory, 3rd ed., Springer, (2005)

  15. Etayo, J.J., Martínez, E.: The symmetric crosscap number of the groups of small-order. J. Algebra Appl. 12(2), 1250164 (2013)

    Article  MathSciNet  Google Scholar 

  16. Frediani, P., Ghigi, A., Penegini, M.: Shimura varieties in the Torelli locus via Galois coverings. Int. Math. Res. Notices. 20, 10595–10623 (2015)

    Article  MathSciNet  Google Scholar 

  17. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.8.8; (2017)

  18. Greenberg, L.: Maximal Fuchsian groups. Bull. Amer. Math. Soc. 69, 569–573 (1963)

    Article  MathSciNet  Google Scholar 

  19. Greenberg, L.: Conformal transformations of riemann surfaces. Amer. J. Math. 82(2), 749–760 (1960)

    Article  MathSciNet  Google Scholar 

  20. Gross, J.L., Tucker, T.W.: Topological Graph Theory, John Wiley and Sons, (1987)

  21. Grothendieck, A. : Esquisse d’un Programme (1984). In Geometric Galois Actions. Schneps, L. and Lochak, P. eds. London Math. Soc. Lect. Notes Ser.242. Cambridge University Press, Cambridge, (1997), 5–47

  22. Harvey, W.J.: Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford Ser. 17, 86–97 (1966)

    Article  MathSciNet  Google Scholar 

  23. Hidalgo, R. A., Marín Montilla, Y., Quispe, S.: Generalized quasi-dihedral group as automorphism group of Riemann surfaces, Preprint 2022. arXiv:2210.01577

  24. Hurwitz, A.: Über algebraische gebilde mit eindeutigen transformationen in siche. Math. Ann. 41, 403–442 (1893)

    Article  Google Scholar 

  25. Kani, E., Rosen, M.: Idempotent relations and factors of Jacobians. Math. Ann. 284(2), 307–327 (1989)

    Article  MathSciNet  Google Scholar 

  26. Lange, H., Recillas, S.: Abelian varieties with group actions. J. Reine Angew. Mathematik 575, 135–155 (2004)

    MathSciNet  Google Scholar 

  27. Macbeath, A.M.: The classification of non-euclidean plane crystallographic groups. Canad. J. Math. 19, 1192–1205 (1967)

    Article  MathSciNet  Google Scholar 

  28. May, C.L.: The symmetric crosscap number of a group. Glasgow Math. J. 43(3), 399–410 (2001)

    Article  MathSciNet  Google Scholar 

  29. May, C.L., Zimmerman, J.: Groups of small strong symmetric genus. J. Group Theory 3(3), 233–245 (2000)

    Article  MathSciNet  Google Scholar 

  30. May, C.L., Zimmerman, J.: There is a group of every strong symmetric genus. Bull. London Math. Soc. 35(4), 433–439 (2003)

    Article  MathSciNet  Google Scholar 

  31. May, C.L., Zimmerman, J.: The \(2\)-groups of odd strong symmetric genus. J. Algebra Appl. 9(3), 465–481 (2010)

    Article  MathSciNet  Google Scholar 

  32. Rojas, A.: Group actions on Jacobian varieties. Rev. Mat. Iberoam. 23(2), 397–420 (2007)

    Article  MathSciNet  Google Scholar 

  33. Singerman, D.: Finitely maximal Fuchsian groups. J. London Math. Soc. 2(6), 29–38 (1972)

    Article  MathSciNet  Google Scholar 

  34. Wilkie, H.C.: On non-Euclidean crystallographic groups. Math. Z. 91, 87–102 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their effort in reviewing this paper and for the provided suggestions, comments, and corrections. The results of this article are mostly based on the second author’s Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saúl Quispe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Projects FONDECYT Regular N. 1220261 and 1230001. The second author has been supported by ANID/Beca de Doctorado Nacional/ 21190335.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, R.A., Marín Montilla, Y.L. & Quispe, S. Quasi-abelian group as automorphism group of Riemann surfaces. manuscripta math. (2024). https://doi.org/10.1007/s00229-024-01552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00229-024-01552-4

Mathematics Subject Classification

Navigation