Skip to main content
Log in

Some functional inequalities under lower Bakry–Émery–Ricci curvature bounds with \({\varepsilon }\)-range

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

For n-dimensional weighted Riemannian manifolds, lower m-Bakry–Émery–Ricci curvature bounds with \({\varepsilon }\)-range, introduced by Lu-Minguzzi-Ohta (Anal Geom Metr Spaces 10(1):1–30, 2022), integrate constant lower bounds and certain variable lower bounds in terms of weight functions. In this paper, we prove a Cheng type inequality and a local Sobolev inequality under lower m-Bakry–Émery–Ricci curvature bounds with \({\varepsilon }\)-range. These generalize those inequalities under constant curvature bounds for \(m \in (n,\infty )\) to \(m\in (-\infty ,1]\cup \{\infty \}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borghini, S., Fogagnolo, M.: Comparison geometry for substatic manifolds and a weighted isoperimetric inequality. arXiv:2307.14618 (2023)

  2. Cheng, S.Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143(3), 289–297 (1975)

    Article  MathSciNet  Google Scholar 

  3. Gentil, I., Zugmeyer, S.: A family of Beckner inequalities under various curvature-dimension conditions. Bernoulli 27(2), 751–771 (2021)

    Article  MathSciNet  Google Scholar 

  4. Kolesnikov, A.V., Milman, E.: Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary. J. Geom. Anal. 27(2), 1680–1702 (2017)

    Article  MathSciNet  Google Scholar 

  5. Kuwae, K., Li, X.-D.: New Laplacian comparison theorem and its applications to diffusion processes on Riemannian manifolds. Bull. Lond. Math. Soc. 54(2), 404–427 (2022)

    Article  MathSciNet  Google Scholar 

  6. Kuwae, K., Sakurai, Y.: Rigidity phenomena on lower \(N\)-weighted Ricci curvature bounds with \(\varepsilon \)-range for nonsymmetric Laplacian. Ill. J. Math. 65(4), 847–868 (2021)

    MathSciNet  Google Scholar 

  7. Kuwae, K., Sakurai, Y.: Comparison geometry of manifolds with boundary under lower \(N\)-weighted Ricci curvature bounds with \(\varepsilon \)-range. J. Math. Soc. Jpn. 75(1), 151–172 (2023)

    Article  MathSciNet  Google Scholar 

  8. Kuwae, K., Sakurai, Y.: Lower \( N \)-weighted Ricci curvature bound with \(\varepsilon \)-range and displacement convexity of entropies. arXiv:2009.12986. To appear in J. Topol. Anal. (2020)

  9. Li, J., Xia, C.: An integral formula for affine connections. J. Geom. Anal. 27, 2539–2556 (2017)

    Article  MathSciNet  Google Scholar 

  10. Li, P.: Lecture Notes on Geometric Analysis. Seoul National University, Seoul (1993)

    Google Scholar 

  11. Lu, Y., Minguzzi, E., Ohta, S.: Geometry of weighted Lorentz–Finsler manifolds I: singularity theorems. J. Lond. Math. Soc. 104(1), 362–393 (2021)

    Article  MathSciNet  Google Scholar 

  12. Lu, Y., Minguzzi, E., Ohta, S.: Comparison theorems on weighted Finsler manifolds and spacetimes with \(\varepsilon \)-range. Anal. Geom. Metr. Spaces 10(1), 1–30 (2022)

    Article  MathSciNet  Google Scholar 

  13. Mai, C.H.: On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimension. Kyushu J. Math. 73(1), 205–218 (2019)

    Article  MathSciNet  Google Scholar 

  14. Munteanu, O., Wang, J.: Analysis of weighted Laplacian and applications to Ricci solitons. Commun. Anal. Geom. 20(1), 55–94 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ohta, S.: \((K, N)\)-convexity and the curvature-dimension condition for negative \(N\). J. Geom. Anal. 26(3), 2067–2096 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ohta, S.: Comparison Finsler geometry. Springer, Berlin (2021)

    Book  Google Scholar 

  17. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. 27–38 (1992)

  18. Saloff-Coste, L.: Aspects of Sobolev-type inequalities, vol. 289. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  19. Wang, L.F.: On \(L_f^p\)-spectrum and \(\tau \)-quasi-Einstein metric. J. Math. Anal. Appl. 389(1), 195–204 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wang, L.F., Zhang, Z.Y., Zhao, L., Zhou, Y.J.: A Liouville theorem for weighted \(p\)-Laplace operator on smooth metric measure spaces. Math. Methods Appl. Sci. 40(4), 992–1002 (2017)

    Article  MathSciNet  Google Scholar 

  21. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83(2), 337–405 (2009)

    MathSciNet  Google Scholar 

  22. Woolgar, E., Wylie, W.: Cosmological singularity theorems and splitting theorems for N-Bakry–Émery spacetimes. J. Math. Phys. 57(2), 022504 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wu, J.-Y.: Upper bounds on the first eigenvalue for a diffusion operator via Bakry–Émery Ricci curvature. J. Math. Anal. Appl. 361(1), 10–18 (2010)

    Article  MathSciNet  Google Scholar 

  24. Wu, J.-Y.: Upper bounds on the first eigenvalue for a diffusion operator via Bakry–Émery Ricci curvature II. Results Math. 63(3), 1079–1094 (2013)

    Article  MathSciNet  Google Scholar 

  25. Wu, J.-Y.: A note on the splitting theorem for the weighted measure. Ann. Glob. Anal. Geom. 43, 287–298 (2013)

    Article  MathSciNet  Google Scholar 

  26. Wylie, W., Yeroshkin, D.: On the geometry of Riemannian manifolds with density. arXiv:1602.08000 (2016)

Download references

Acknowledgements

I would like to express deep appreciation to my supervisor Shin-ichi Ohta for his support, encouragement and for making a number of valuable suggestions and comments on preliminary versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Fujitani.

Ethics declarations

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Upper bound of the \(L^p\)-spectrum for deformed measures

Appendix: Upper bound of the \(L^p\)-spectrum for deformed measures

Although we considered the Riemannian distance d, it is also possible to study comparison theorems associated with a metric deformed by using the weight function (we refer [5, 6, 26], for example). In this “Appendix”, we start from a volume comparison theorem in [6] and prove a variant of Cheng type inequality for the \(L^p\)-spectrum.

Let \((M,g,\mu = \textrm{e}^{-\psi }v_g)\) be an n-dimensional weighted Riemannian manifold, \(m\in (-\infty ,1]\cup [n,+\infty ]\) and \({\varepsilon }\in {\mathbb {R}}\) in the range (1). We fix a point \(q\in M\). We define lower semi continuous functions \(s_q:M\rightarrow {\mathbb {R}}\) by

$$\begin{aligned} \quad s_q(x):=\inf _{\gamma }\int ^{d(q,x)}_0\,\textrm{e}^{ -\frac{2(1-{\varepsilon })\psi (\gamma (\xi ))}{n-1} }\,\textrm{d}\xi , \end{aligned}$$

where the infimum is taken over all unit speed minimal geodesics \(\gamma :[0,d(q,x)]\rightarrow M\) from q to x. For \(r>0\), we define

$$\begin{aligned} B_{\psi ,q}(r):=\left\{ \,x\in M \mid s_q(x) < r \,\right\} , \end{aligned}$$

and also define measures

$$\begin{aligned} \mu :=\textrm{e}^{-\psi }\,v_g,\quad \nu :=\textrm{e}^{ - \frac{2(1-{\varepsilon })\psi }{n-1} }\mu . \end{aligned}$$

We set

$$\begin{aligned} {\mathcal {S}}_{-K}(r):=\int ^{r}_{0}\,{\textbf{s}}^{1/c}_{-K}(s)\,\textrm{d}s \end{aligned}$$

for \(K > 0\). In [6], they obtained the following theorem.

Theorem 9

([6, Proposition 4.6], Volume comparison) Let \((M,g,\mu )\) be an n-dimensional weighted Riemannian manifold. We assume \({{\,\textrm{Ric}\,}}^{m}_{\psi } \ge -K\textrm{e}^{ \frac{4({\varepsilon }-1)\psi }{n-1} }g\) for \(K > 0\). Then for all \(r,R>0\) with \(r\le R\) we have

$$\begin{aligned} \frac{\nu (B_{\psi ,q}(R))}{\nu (B_{\psi ,q}(r))} \le \frac{{\mathcal {S}}_{-cK}(R)}{{\mathcal {S}}_{-cK}(r)}. \end{aligned}$$

In the following argument, we start from Theorem 9 instead of Theorem 1 to prove a Cheng type inequality of the \(L^p\)-spectrum for the deformed measure \(\nu \).

Theorem 10

Let \((M,g,\mu )\) be a complete weighted Riemannian manifold. We assume that \(s_q\) is smooth and there exists a constant \(k > 0\) such that

$$\begin{aligned} |\nabla s_q(x)|\le k \end{aligned}$$

holds for arbitrary \(x\in M\). We also assume

$$\begin{aligned} {{\,\textrm{Ric}\,}}^{m}_{\psi } \ge -K\,\textrm{e}^{ \frac{4({\varepsilon }-1)\psi }{n-1} }g \end{aligned}$$

for \(K > 0\). Then we have

$$\begin{aligned} \lambda _{\nu ,p}(M) \le \left( \frac{k}{p}\sqrt{\frac{K}{c}}\right) ^p. \end{aligned}$$
(19)

Proof

We apply the argument in Theorem 6.

For \(R\ge 2\), let \(\eta :{\mathbb {R}}\rightarrow {\mathbb {R}}\) be a nonnegative smooth function such that \(\eta = 1\) on \((-(R-1),R-1)\), \(\eta = 0\) on \({\mathbb {R}}\backslash (-R,R)\) and \(|\eta '| \le C_3\), where \(C_3\) is a constant independent of R. We set, for an arbitrary \(\delta > 0\),

$$\begin{aligned} \alpha = -\frac{\sqrt{K/c} + \delta }{p} \end{aligned}$$

and

$$\begin{aligned} \phi (y):= \exp (\alpha s_q(y))\varphi (y), \end{aligned}$$

where \(\varphi (y):= \eta (s_q(y))\). By the assumption of \(s_{q}\), we have

$$\begin{aligned} |\nabla \varphi | = |\eta '(s_q)||\nabla s_q| \le k C_3. \end{aligned}$$

As in the proof of Theorem 6, we find for an arbitrary \(\zeta > 0\),

$$\begin{aligned} |\nabla \phi |^p= & {} \left| \alpha \textrm{e}^{\alpha s_q} \varphi \nabla s_q+\textrm{e}^{\alpha s_q} \nabla \varphi \right| ^p \\\le & {} \textrm{e}^{p \alpha s_q}(-k\alpha \varphi +|\nabla \varphi |)^p \\\le & {} \textrm{e}^{p \alpha s_q}\left[ (1+\zeta )^{p-1}(-k\alpha \varphi )^p+\left( \frac{1+\zeta }{\zeta }\right) ^{p-1}|\nabla \varphi |^p\right] . \end{aligned}$$

By the definition of \(\lambda _{\nu ,p}(M)\), we obtain

$$\begin{aligned} \lambda _{\nu ,p}(M)\le & {} (1+\zeta )^{p-1}(-k\alpha )^p+\left( \frac{1+\zeta }{\zeta }\right) ^{p-1} \frac{\int _M \exp (p \alpha s_q)|\nabla \varphi |^p \textrm{d}\nu }{\int _M \exp (p \alpha s_q) \varphi ^p \textrm{d}\nu }\nonumber \\= & {} (1+\zeta )^{p-1}(-k\alpha )^p+\left( \frac{1+\zeta }{\zeta }\right) ^{p-1} \frac{\int _{B_{\psi ,q}(R) \backslash B_{\psi ,q}(R-1)} \exp (p \alpha s_q)|\nabla \varphi |^p \textrm{d}\nu }{\int _{B_{\psi ,q}(R)} \exp (p \alpha s_q) \varphi ^p \textrm{d}\nu }\nonumber \\\le & {} (1+\zeta )^{p-1}(-k\alpha )^p+(kC_3)^p\left( \frac{1+\zeta }{\zeta }\right) ^{p-1} \frac{\exp (p \alpha (R-1)) \nu \left( B_{\psi ,q}(R)\right) }{\int _{B_{\psi ,q}(1)} \exp (p \alpha s_q) \textrm{d}\nu } \nonumber \\\le & {} (1+\zeta )^{p-1}(-k\alpha )^p+(kC_3)^p\left( \frac{1+\zeta }{\zeta }\right) ^{p-1} \frac{\exp (p \alpha (R-1)) \nu \left( B_{\psi ,q}(R)\right) }{\exp (p \alpha ) \nu \left( B_{\psi ,q}(1)\right) }.\nonumber \\ \end{aligned}$$
(20)

From Theorem 9 and

$$\begin{aligned} (\sqrt{cK})^{1/c}{\mathcal {S}}_{-cK}(R)\le & {} \int _0^R \left[ \frac{1}{2}\left\{ \exp (\sqrt{cK}s) - \exp (-\sqrt{cK}s)\right\} \right] ^{1/c}\textrm{d}s\\\le & {} \sqrt{\frac{c}{K}}\exp \left( \sqrt{\frac{K}{c}}R\right) , \end{aligned}$$

we deduce

$$\begin{aligned} \frac{\textrm{e}^{p\alpha (R-1)}\nu (B_{\psi ,q}(R))}{\textrm{e}^{p\alpha }\nu (B_{\psi ,q}(1))}\le & {} \frac{\textrm{e}^{p\alpha R}}{\textrm{e}^{2p\alpha }}\frac{1}{(\sqrt{cK})^{1/c}{\mathcal {S}}_{-cK}(1)}\sqrt{\frac{c}{K}}\exp \left( \sqrt{\frac{K}{c}}R\right) \\= & {} \frac{1}{\textrm{e}^{2p\alpha }(\sqrt{cK})^{1/c} {\mathcal {S}}_{-cK}(1)}\sqrt{\frac{c}{K}}\exp \left( p\alpha R + \sqrt{\frac{K}{c}}R\right) \rightarrow 0 \end{aligned}$$

as \(R\rightarrow \infty \). Letting \(R\rightarrow \infty \) in (20), we obtain

$$\begin{aligned} \lambda _{\nu ,p}(M) \le (1 + \zeta )^{(p-1)}(-k\alpha )^p. \end{aligned}$$
(21)

Since \(\zeta > 0\) and \(\delta > 0\) are arbitrary, the theorem follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujitani, Y. Some functional inequalities under lower Bakry–Émery–Ricci curvature bounds with \({\varepsilon }\)-range. manuscripta math. (2024). https://doi.org/10.1007/s00229-024-01537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00229-024-01537-3

Mathematics Subject Classification

Navigation