Skip to main content
Log in

On the BDP Iwasawa main conjecture for modular forms

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let K be an imaginary quadratic field where p splits, \(p\ge 5\) a prime number and f an eigen-newform of even weight and level \(N>3\) that is coprime to p. Under the Heegner hypothesis, Kobayashi–Ota showed that one inclusion of the Iwasawa main conjecture of f involving the Bertolini–Darmon–Prasanna p-adic L-function holds after tensoring by \(\mathbb {Q}_p\). Under certain hypotheses, we improve upon Kobayahsi–Ota’s result and show that the same inclusion holds integrally. Our result implies the vanishing of the Iwasawa \(\mu \)-invariants of several anticyclotomic Selmer groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Even though the hypothesis that the modular forms are p-ordinary of square-free level is in force in [13], the proof of loc. cit. is in fact purely algebraic and can be carried out in verbatim to our setting. Note in particular that for the non-ordinary case, the local conditions of the Selmer group \(\mathcal {X}_{(\emptyset ,0)}(f)\) are independent of the reduction type. See also [23, Theorem A].

  2. For simplicity, we have identified \({\tilde{\mathfrak {R}}}_1^{\psi =0}\) with \(\mathscr {W}[[\mathcal {G}_{p^\infty }]]\) by Proposition 5.15 loc. cit.

  3. While it is denoted by \(K_\infty \) in the main body of the article, here for clarity we use the notation \(K^\textrm{ac}\) instead.

References

  1. Burungale, A., Castella, F., Kim, C.-H.: A proof of Perrin–Riou’s Heegner point main conjecture. Algebra Number Theory 15(7), 1627–1653 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bertolini, M., Darmon, H., Prasanna, K.: Generalized Heegner cycles and \(p\)-adic Rankin \(L\)-series. Duke Math. J. 162(6), 1033–1148 (2013)

    Article  MathSciNet  Google Scholar 

  3. Büyükboduk, K., Lei, A.: Integral Iwasawa theory of Galois representations for non-ordinary primes. Math. Z. 286(1–2), 361–398 (2017)

    Article  MathSciNet  Google Scholar 

  4. Büyükboduk, K., Lei, A.: Iwasawa theory of elliptic modular forms over imaginary quadratic fields at non-ordinary primes. Int. Math. Res. Not. IMRN 14, 10654–10730 (2021)

    Article  MathSciNet  Google Scholar 

  5. Brakočević, Miljan: Anticyclotomic \(p\)-adic \(L\)-function of central critical Rankin–Selberg \(L\)-value. Int. Math. Res. Not. IMRN 21, 4967–5018 (2011)

    MathSciNet  Google Scholar 

  6. Castella, F.: \(p\)-adic heights of Heegner points and Beilinson–Flach elements. J. London Math. Soc. 6(1), 1–23 (2017)

    MathSciNet  Google Scholar 

  7. Castella, F., Çiperiani, M., Skinner, C., Sprung, F.: On the Iwasawa main conjectures for modular forms at non-ordinary primes. (2018) arXiv:1804.10993

  8. Robert, F.: Coleman and Bas Edixhoven, On the semi-simplicity of the \(U_p\)-operator on modular forms. Math. Ann. 310(1), 119–127 (1998)

    Article  MathSciNet  Google Scholar 

  9. Castella, F., Hsieh, M.-L.: Heegner cycles and \(p\)-adic \(L\)-functions. Math. Ann. 370(1–2), 567–628 (2018)

    Article  MathSciNet  Google Scholar 

  10. Castella, F., Hsieh, M.-L.: On the nonvanishing of generalised Kato classes for elliptic curves of rank 2. Forum Math. Sigma 10 (2022). Paper No. e12, 32

  11. Deligne, P.: Formes modulaires et représentations \(l\)-adiques. Séminaire Bourbaki (1968/69) 21, Exp. No. 355, 139–172

  12. Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  13. Hatley, J., Lei, A.: Comparing anticyclotomic Selmer groups of positive coranks for congruent modular forms. Math. Res. Lett. 26(4), 1115–1144 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hatley, J., Lei, A.: The vanishing of anticyclotomic \(\mu \)-invariants for non-ordinary modular forms. C. R. Math. Acad. Sci. Paris 361, 65–72 (2023)

    MathSciNet  Google Scholar 

  15. Howard, B.: The Heegner point Kolyvagin system. Compos. Math. 140(6), 1439–1472 (2004)

    Article  MathSciNet  Google Scholar 

  16. Howard, B.: Iwasawa theory of Heegner points on abelian varieties of \(\rm GL _2\)-type. Duke Math. J. 124(1), 1–45 (2004)

    Article  MathSciNet  Google Scholar 

  17. Hsieh, M.-L.: Special values of anticyclotomic Rankin–Selberg \(L\)-functions. Doc. Math. 19, 709–767 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kobayashi, S., Ota, K.: Anticyclotomic main conjecture for modular forms and integral Perrin–Riou twists. In M. Kurihara et al. (eds), Development of Iwasawa Theory—the Centennial of K. Iwasawa’s Birth. Adv. Stud. Pure Math., Math. Soc. Japan, pp. 537–594 (2020)

  19. Kobayashi, S.: A \(p\)-adic interpolation of generalized Heegner cycles and integral Perrin-Riou twist, 2022, preprint, https://sites.google.com/view/shinichikobayashi (version September 3rd) (2022)

  20. Lei, A.: Iwasawa theory for modular forms at supersingular primes. Compositio Math. 147(03), 803–838 (2011)

    Article  MathSciNet  Google Scholar 

  21. Antonio Lei and Meng Fai Lim: Mordell-Weil ranks and Tate-Shafarevich groups of elliptic curves with mixed-reduction type over cyclotomic extensions. Int. J. Number Theory 18(2), 303–330 (2022)

    Article  MathSciNet  Google Scholar 

  22. Lei, A., Loeffler, D., Zerbes, S.L.: On the asymptotic growth of Bloch–Kato–Shafarevich–Tate groups of modular forms over cyclotomic extensions. Canad. J. Math. 69(4), 826–850 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lei, A., Müller, K., Xia, J.: On the Iwasawa invariants of BDP Selmer groups and BDP \(p\)-adic \(L\)-fucntions. (2023) arXiv:2302.06553

  24. Lei, A.: Sprung, Florian: Ranks of elliptic curves over \(\mathbb{Z} _{p}^{2}\)-extensions. Israel J. Math. 236(1), 183–206 (2020)

    Article  MathSciNet  Google Scholar 

  25. Longo, M., Vigni, S.: Kolyvagin systems and Iwasawa theory of generalized Heegner cycles. Kyoto J. Math. 59(3), 717–746 (2019)

    Article  MathSciNet  Google Scholar 

  26. David Loeffler and Sarah Livia Zerbes: Iwasawa theory and \(p\)-adic \(L\)-functions over \({Z}_p^2\)-extensions. Int. J. Number Theory 10(8), 2045–2095 (2014)

    Article  MathSciNet  Google Scholar 

  27. Matar, A.: Plus/minus Selmer groups and anticyclotomic \({\mathbb{ Z}}_p\)-extensions. Res. Number Theory 7(3) (2021)

  28. Mazur, B., Rubin, K.: Kolyvagin systems. Mem. Amer. Math. Soc. 168(799), 96 (2004)

    MathSciNet  Google Scholar 

  29. Nekovár̆, J.: Kolyvagin’s method for Chow groups of Kuga-Sato varieties. Invent. Math. 107 (1), 99–126 (1992)

  30. Pollack, R., Weston, T.: On anticyclotomic \(\mu \)-invariants of modular forms. Compos. Math. 1, 439–485 (2011)

    MathSciNet  Google Scholar 

  31. Sprung, F.: The Šafarevič-Tate group in cyclotomic \(Z_p\)-extensions at supersingular primes. J. Reine Angew. Math. 681, 199–218 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Ashay Burungale, Kazim Buyukboduk, Jeffrey Hatley, Chan-Ho Kim, Katharina Müller and Jiacheng Xia for interesting discussions during the preparation of the article. We are grateful to Ming-Lun Hsieh for answering our questions regarding generalized Heegner cycles. We are also indebted to the anonymous referee for their valuable comments and suggestions. The first named author’s research is supported by the NSERC Discovery Grants Program RGPIN-2020-04259 and RGPAS-2020-00096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lei.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Integrality of specializations of the Perrin-Riou map

Appendix A: Integrality of specializations of the Perrin-Riou map

Notation note. The notation and hypotheses in the main body of the article continue to be in force. For a p-adic Lie group G and a p-adic ring R, we write \(\Lambda _R(G)\) for the completed group ring of G with coefficients in R, and \(\mathscr {H}_{\infty ,R}(G)\) for the algebra of \(\textrm{Frac}(R)\)-valued distributions on G. If \(R=\mathcal {O}\), we often omit it from the notation.

1.1 A.1 Anticyclotomic Perrin-Riou regulator and Coleman maps

In this section, we review the construction of the anticyclotomic Perrin-Riou regulator and Coleman maps, by composing the two-variable counterparts with the projection map as done in [9, §5.1]. We begin by recalling the two-variable Perrin-Riou map from [26] and its decomposition given in [4]. Let \(k_\infty \) be the \(\mathbb {Z}_p^2\)-extension of K, and fix an embedding \(k_\infty \rightarrow \mathbb {C}_p\) such that the induced place on K is \(\mathfrak {p}\); by an abuse of notation we will write this place of \(k_\infty \) also as \(\mathfrak {p}\). Since p is assumed to be split in K, there is a natural identification \(K_\mathfrak {p}\simeq \mathbb {Q}_p\), and the local completion \(k_{\infty ,\mathfrak {p}}\) can be identified with the compositum \(F_\infty \mathbb {Q}_p^{\textrm{cyc}}\), where \(F_\infty \) is the unramified \(\mathbb {Z}_p\)-extension of \(\mathbb {Q}_p\) and \(\mathbb {Q}_p^\textrm{cyc}\) is the cyclotomic \(\mathbb {Z}_p\)-extension of \(\mathbb {Q}_p\). Put \(U = {\text {Gal}}(F_\infty /\mathbb {Q}_p)\) and \(F_m = F_\infty ^{U^{p^m}}\). When \(m=0\), we shall write \(F=F_0=\mathbb {Q}_p\).

The two-variable Perrin-Riou map constructed by Loeffler–Zerbes [26] is given by the projective limit

$$\begin{aligned} \mathcal {L}_{T,F_\infty }&= \varprojlim _m \mathcal {L}_{T,F_m}: \varprojlim _m H^1_\textrm{Iw}(F_m\mathbb {Q}_p^\textrm{cyc},T)\\&\rightarrow \varprojlim _m \mathscr {H}_{\infty }(\tilde{\Gamma }^{\textrm{cyc}})\otimes _{\mathbb {Q}_p} \mathbb {D}_{\textrm{cris}}(T)\otimes _{\mathbb {Z}_p} \mathcal {O}_{F_m}\\&\simeq \mathscr {H}_{\infty }(\tilde{\Gamma }^{\textrm{cyc}})\otimes _{\mathbb {Q}_p}\mathbb {D}_\textrm{cris}(T)\widehat{\otimes }_{\mathbb {Z}_p} S_{F_\infty /\mathbb {Q}_p}, \end{aligned}$$

where \(\tilde{\Gamma }^{\textrm{cyc}} = {\text {Gal}}(F_\infty \mathbb {Q}_p^\textrm{cyc}/F_\infty )\subset {\text {Gal}}(F_\infty \mathbb {Q}_p^\textrm{cyc}/K_\mathfrak {p})\), \(S_{F_\infty /\mathbb {Q}_p}\) is the Yager module [26, §3.2], and the transition maps in the inverse limits are given by corestrictions on the left, and trace maps on \(\mathcal {O}_{F_m}\) on the right [26, Theorem 4.7]. As a \(\Lambda _{\mathbb {Z}_p}(U)\)-module, \(S_{F_\infty /\mathbb {Q}_p}\) is contained in \(\Lambda _{\mathcal {O}_{\hat{F}_\infty }}(U)\) and is free of rank one. We fix a basis \(\mathcal {Y}\) of the \(\Lambda _{\mathbb {Z}_p}(U)\)-module \(S_{F_\infty /\mathbb {Q}_p}\).

We fix an \(\mathcal {O}\)-basis \(\omega \) of \(\textrm{Fil}^0\mathbb {D}_{\textrm{cris}}(T)\), then \(v_1=\omega ,v_2=\varphi (\omega )\) form an \(\mathcal {O}\)-basis of \(\mathbb {D}_{\textrm{cris}}(T)\) (see, e.g., [22, Lemma 3.1]). Furthermore, for any intermediate extension \(F_m\), we have Coleman maps

$$\begin{aligned} \textrm{Col}_{\sharp /\flat ,F_m}:H^1_{\textrm{Iw}}(F_m\mathbb {Q}_p^\textrm{cyc},T)\rightarrow \Lambda ({\text {Gal}}(F_m\mathbb {Q}_p^{\textrm{cyc}}/F_m))\otimes _{\mathbb {Z}_p}\mathcal {O}_{F_m}, \end{aligned}$$

such that [4, §2.3]

$$\begin{aligned} \mathcal {L}_{T,F_m} = (v_1,v_2)M_{\log }\begin{pmatrix} \textrm{Col}_{\sharp ,F_m}\\ \textrm{Col}_{\flat ,F_m}\\ \end{pmatrix}, \end{aligned}$$

where \(M_{\log }\) is the logarithm matrix, a \(2\times 2\) matrix valued in \(\mathscr {H}_\infty ({\text {Gal}}(F_m\mathbb {Q}_p^{\textrm{cyc}}/F_m))\simeq \mathscr {H}_\infty (\tilde{\Gamma }^{\textrm{cyc}})\) that is independent of m. Taking the inverse limit, we thus obtain a factorization of the big logarithm:

$$\begin{aligned} \mathcal {L}_{T,F_\infty } = (v_1\ v_2)M_{\log } \begin{pmatrix} \textrm{Col}_{\sharp ,F_\infty }\\ \textrm{Col}_{\flat ,F_\infty }\\ \end{pmatrix}, \end{aligned}$$
(A.1)

where, for \(\star \in \{\flat ,\sharp \}\),

$$\begin{aligned} \textrm{Col}_{\star ,F_\infty }:H^1_\textrm{Iw}(k_{\infty ,\mathfrak {p}},T)\rightarrow \Lambda (\tilde{\Gamma }^{\textrm{cyc}})\widehat{\otimes } \mathcal {Y}\Lambda (U)\subset \Lambda _{\mathcal {O}_{\hat{F}_\infty }}(\tilde{\Gamma }^{\textrm{cyc}}\times U) \end{aligned}$$

is the limit of \(\textrm{Col}_{\star ,F_m}\).

Remark A.1

Since \(\mathcal {L}_{T,F_\infty }\) is \(\Lambda (U)\)-linear [26, paragraph after Definition 4.6], so are the Coleman maps defined above. As such, for \(\star \in \{\sharp ,\flat \}\), a consideration of the determinants of \(\mathcal {L}_{T,F_\infty }\) and \(M_{\log }\) shows that \(\textrm{im}(\textrm{Col}_{\star ,F_m})= \textrm{im}(\textrm{Col}_{\star ,F})\otimes \mathcal {O}_{F_m}\subseteq \Lambda ({\text {Gal}}(F_m\mathbb {Q}_p^{\textrm{cyc}}/F_m))\otimes _{\mathbb {Z}_p}\mathcal {O}_{F_m}\). Thus

$$\begin{aligned} \textrm{im}(\textrm{Col}_{\star ,F_\infty })= \textrm{im}(\textrm{Col}_{\star ,F})\otimes \mathcal {Y}\Lambda (U)\subseteq \Lambda (\tilde{\Gamma }^{\textrm{cyc}})\otimes \Lambda _{\mathcal {O}_{\hat{F}_\infty }}(U). \end{aligned}$$

We now project the factorization (A.1) to the anticyclotomic subextension, following [9, Theorem 5.1]. Let \(K^\textrm{ac}\) denote the anticyclotomic \(\mathbb {Z}_p\)-extension of K,Footnote 3 and denote by \(\Gamma ^\textrm{ac} = {\text {Gal}}(K^\textrm{ac}/K)\simeq {\text {Gal}}(K^\textrm{ac}_\mathfrak {p}/K_\mathfrak {p})\simeq \mathbb {Z}_p\).

Theorem A.2

By quotienting out \(\mathfrak {J}=\ker (\Lambda (U\times \tilde{\Gamma }^{\textrm{cyc}})\rightarrow \Lambda (\Gamma ^\textrm{ac}))\), the map \(\mathcal {L}_{T,F_\infty }\) descends to a \(\Lambda (\Gamma ^\textrm{ac})\)-linear map

$$\begin{aligned} \mathcal {L}_{T}^{\textrm{ac}}: H^1_\textrm{Iw}(K^\textrm{ac}_\mathfrak {p}, T) \rightarrow \mathscr {H}_{\infty ,{\hat{F}}_\infty }(\Gamma ^\textrm{ac})\otimes \mathbb {D}_\textrm{cris}(T). \end{aligned}$$

Therefore, there exist Coleman maps \(\textrm{Col}_{\sharp }^\textrm{ac},\textrm{Col}_{\flat }^\textrm{ac}: H^1_\textrm{Iw}(K^\textrm{ac}_\mathfrak {p},T)\rightarrow \Lambda (\Gamma ^\textrm{ac})\), being the projections of \(\textrm{Col}_{\sharp ,F_\infty },\textrm{Col}_{\flat ,F_\infty }\) in \(\Lambda (\Gamma ^\textrm{ac})\), such that the following factorization holds for all \(z\in H^1_\textrm{Iw}(K^\textrm{ac}_\mathfrak {p},T)\)

$$\begin{aligned} \mathcal {L}_{T}^{\textrm{ac}}(z) = (v_1\ v_2)\overline{M}_{\log } \begin{pmatrix} \textrm{Col}_{\sharp }^{\textrm{ac}}(z)\\ \textrm{Col}_{\flat }^{\textrm{ac}}(z)\\ \end{pmatrix}. \end{aligned}$$

Here, \(\overline{M}_{\log }\) denotes the image of \(M_{\log }\) in \(M_2(\mathscr {H}_{k-1,\mathfrak {F}}(\tilde{\Gamma }^\textrm{cyc})/\mathfrak {J})=M_2(\mathscr {H}_{k-1,\mathfrak {F}}(\Gamma ^\textrm{ac}))\).

Proof

Recall from [18, Lemma 2.7] that \(V^{{\text {Gal}}(K^\textrm{ac}_\mathfrak {p}/K)}=0\). Thus, the theorem follows from [9, Theorem 5.1]. \(\square \)

Remark A.3

As explained in [24, Remark 5.2], we may identify \({\text {Gal}}(k_{\infty ,\mathfrak {p}}/K_\mathfrak {p})\) with \(\mathbb {Z}_p^2\) such that U is the first component and \(\tilde{\Gamma }^{\textrm{cyc}}\) is the second component. As such, \(\Gamma ^\textrm{ac}\) corresponds to anti-diagonal elements

$$\begin{aligned} \{(a,-a)\in \mathbb {Z}_p^2: a\in \mathbb {Z}_p\}. \end{aligned}$$

1.2 A.2 Evaluating the logarithm matrix

In what follows, we fix a family of primitive \(p^n\)-th roots of unity \(\zeta _{p^n}\) and write \(\epsilon _n = \zeta _{p^n}-1\). We may choose topological generators \(\gamma ^{\textrm{ur}}\in U\) and \(\gamma ^\textrm{cyc}\in \tilde{\Gamma }^\textrm{cyc}\) resulting in a topological generator \(\gamma \) of \( \Gamma ^\textrm{ac}\) given by

$$\begin{aligned} \gamma = (\gamma ^\textrm{cyc}/\gamma ^\textrm{ur})^{1/2}, \end{aligned}$$

which is possible by Remark A.3 and that \(p\ne 2\). By these choices, for \(G\in \{U,\tilde{\Gamma }^{\textrm{cyc}},\Gamma ^\textrm{ac}\}\), we regard \(\mathscr {H}_{\infty }(G)\) as the set of power series convergent on the open unit disc centered at 0 with variable \(X_G\). To simplify notation, we write \(Y=X_U\), \(Z = X_{\tilde{\Gamma }^\textrm{cyc}}\) and \(X=X_{\Gamma ^\textrm{ac}}\). As \(\gamma = (\gamma ^\textrm{cyc}/\gamma ^\textrm{ur})^{1/2}\), the natural projection

$$\begin{aligned} \mathscr {H}_\infty (U\times \tilde{\Gamma }^\textrm{cyc}) = \mathscr {H}_\infty (U)\hat{\otimes }\mathscr {H}_\infty (\tilde{\Gamma }^\textrm{cyc}) \rightarrow \mathscr {H}_\infty (\Gamma ^\textrm{ac}) \end{aligned}$$

is given by sending f(YZ) to \(f((1+X)^{-1}-1,X)\).

We now turn to the explicit description of \(M_{\log }\) and thus \(\overline{M}_{\log }\), following [3, §2]. Denote by \(\Phi _{p^n}(Z)\) the \(p^n\)-th cyclotomic polynomial \(\frac{(Z+1)^{p^n}-1}{(Z+1)^{p^{n-1}}-1}\). Additionally, recall the matrices

$$\begin{aligned} A= \begin{pmatrix} 0 &{} -1/p\\ 1 &{} a_p/p \end{pmatrix}\quad and \quad Q_n(Z) = \begin{pmatrix} a_p &{} 1\\ -\Phi _{p^{n+1}}(Z) &{} 0\\ \end{pmatrix}\ (n\ge 0). \end{aligned}$$

Proposition 2.5 ibid. tells us that

$$\begin{aligned} M_{\log }(Y,Z) = M_{\log }(Z) = \lim _{n\rightarrow \infty } A(Z)^{n+1}Q_{n-1}(Z)\cdots Q_0(Z). \end{aligned}$$

Consequently,

$$\begin{aligned} \overline{M}_{\log }(X) = M_{\log }(X) = \lim _{n\rightarrow \infty } A(X)^{n+1}Q_{n-1}(X)\cdots Q_0(X). \end{aligned}$$

Henceforward we shall not distinguish \(\overline{M}_{\log }\) from \(M_{\log }\).

Next, given \(\phi =\begin{pmatrix} a &{} b \\ c &{} d\\ \end{pmatrix}\) with entries valued in \(\overline{\mathbb {Q}_p}\), following the notation introduced in [31, Definition 4.4], we write

$$\begin{aligned} \textrm{ord}_p(\phi ) = \begin{pmatrix} \textrm{ord}_p(a) &{} \textrm{ord}_p(b)\\ \textrm{ord}_p(c) &{} \textrm{ord}_p(d)\\ \end{pmatrix}. \end{aligned}$$

Further, we denote \(\textrm{ord}_p(a_p)\) by v. To state the result below, we recall from [8, Theorem 2.1] that the two roots of \(X^2 - a_p X + p\) are distinct since f is of weight 2.

Lemma A.4

Let \(\alpha \ne \beta \) be the two roots of the Hecke polynomial \(X^2 - a_p X + p\). Also let S denote the matrix

$$\begin{aligned} S = \begin{pmatrix} 1 &{} 1\\ -\alpha &{} -\beta \end{pmatrix}. \end{aligned}$$

Then \(M_{\log }(\epsilon _n)\) is of the form

$$\begin{aligned}(\alpha -\beta )^{-1}S \begin{pmatrix} -s_1/\beta ^n &{} -s_2/\beta ^n\\ s_1/\alpha ^n &{} s_2/\alpha ^n \end{pmatrix}, \end{aligned}$$

for some \(s_1,s_2\in \overline{\mathbb {Q}_p}\) of p-adic valuations \(v\varvec{1}_{2\not \mid n}+\sum _{1\le i\le n/2}p^{-2i+1}\) and \(v\varvec{1}_{2\mid n} + \sum _{1\le i< n/2}p^{-2i}\) respectively.

Proof

Note that for \(i\ge n\), we have \(\Phi _{p^{i+1}}(\epsilon _n) = p\), which implies that \(A = Q_i(\epsilon _n)^{-1}\). This implies that \(M_{\log }(\epsilon _n) = A^{n+1}Q_{n-1}\cdots Q_0(\epsilon _n)\). By [22, Proposition 4.6], we have

$$\begin{aligned} \text {ord}_p(Q_{n-1}\cdots Q_0(\epsilon _n))= \left\{ \begin{array}{ll} \begin{pmatrix} v+\sum _{i=1}^{\frac{n-1}{2}} \frac{1}{p^{2i-1}} &{}{} \sum _{i=1}^{\frac{n-1}{2}} \frac{1}{p^{2i}}\\ \infty &{}{} \infty \\ \end{pmatrix} &{}{} \text{ if } n \text{ is } \text{ odd, }\\ \\ \begin{pmatrix} \sum _{i=1}^{\frac{n}{2}} \frac{1}{p^{2i-1}} &{}{} v+\sum _{i=1}^{\frac{n}{2}-1} \frac{1}{p^{2i}}\\ \infty &{}{} \infty \\ \end{pmatrix} &{}{} \text{ if } n \text{ is } \text{ even }.\\ \end{array}\right. \end{aligned}$$

For the matrix A, we have the diagonalization

$$\begin{aligned} A = p^{-1}S\begin{pmatrix} \alpha &{} 0\\ 0 &{} \beta \\ \end{pmatrix}S^{-1}. \end{aligned}$$

Write \(Q_{n-1}\cdots Q_0(\epsilon _n) = \begin{pmatrix} s_1 &{} s_2 \\ 0 &{} 0\\ \end{pmatrix}\), we have

$$\begin{aligned} S^{-1}A^{n+1}Q_{n-1}\cdots Q_0(\epsilon _n)&= p^{-n-1} \begin{pmatrix} \alpha ^{n+1} &{} 0 \\ 0 &{} \beta ^{n+1} \end{pmatrix} S^{-1} \begin{pmatrix} s_1 &{} s_2 \\ 0 &{} 0\\ \end{pmatrix}\\&=p^{-n-1} \begin{pmatrix} \alpha ^{n+1} &{} 0 \\ 0 &{} \beta ^{n+1} \end{pmatrix} \begin{pmatrix} -\beta s_1 &{} -\beta s_2\\ \alpha s_1 &{} \alpha s_2 \end{pmatrix} \frac{1}{(\alpha -\beta )}\\&=\frac{p^{-n-1}}{\alpha -\beta } \begin{pmatrix} -p\alpha ^n &{} 0\\ 0 &{} p\beta ^n\\ \end{pmatrix} \begin{pmatrix} s_1 &{} s_2\\ s_1 &{} s_2\\ \end{pmatrix}\\&=\frac{1}{\alpha -\beta } \begin{pmatrix} -s_1/\beta ^n &{} -s_2/\beta ^n\\ s_1/\alpha ^n &{} s_2/\alpha ^n\\ \end{pmatrix}. \end{aligned}$$

\(\square \)

1.3 A.3. Evaluation of Coleman maps

We shall evaluate the images of the Coleman maps at \(\epsilon _n\) using [21, Proposition 2.2]. Write \(\overline{\mathcal {Y}}\) as the anticyclotomic projection of \(\mathcal {Y}\), and we define \(\underline{\textrm{Col}} = (\textrm{Col}_\sharp ^\textrm{ac},\textrm{Col}_\flat ^\textrm{ac}): H^1_{\textrm{Iw}}(K_\mathfrak {p}^\textrm{ac},T)\rightarrow \Lambda (\Gamma ^{\textrm{ac}})^{\oplus 2}\).

Proposition A.5

Let

$$\begin{aligned} I_v = \{(G_1,G_2)\in \overline{\mathcal {Y}}\Lambda (\Gamma ^{\textrm{ac}})^{\oplus 2}\subseteq \Lambda _{\mathcal {O}_{\hat{F}_\infty }}(\Gamma ^{\textrm{ac}})^{\oplus 2}: (p-1)G_1(0) = (2-a_p)G_2(0)\}. \end{aligned}$$

Then \(\textrm{im}(\underline{\textrm{Col}})=I_v\).

Proof

It follows from [21, Proposition 2.2] that

$$\begin{aligned} \textrm{im}(\textrm{Col}_{\sharp ,F},\textrm{Col}_{\flat ,F})&= \{(G_1,G_2)\in \Lambda ({\text {Gal}}(\mathbb {Q}_p^{\textrm{cyc}}/\mathbb {Q}_p))^{\oplus 2}: (p-1)G_1(0)\\&=(2-a_p)G_2(0)\}. \end{aligned}$$

Thus, the affirmation on \(\textrm{im}(\underline{\textrm{Col}})\) follows from Remark A.1. \(\square \)

Lemma A.6

The period \(\mathcal {Y}\in \Lambda _{\mathcal {O}_{\hat{F}_\infty }}(U)\) is invertible, and thus so is \(\overline{\mathcal {Y}}\in \Lambda _{\mathcal {O}_{\hat{F}_\infty }}(\Gamma ^{\textrm{ac}})\).

Proof

The period \(\mathcal {Y}\) is constructed from choosing a compatible system of integral normal basis generator \((x_{F_m})_{m\ge 0}\in \varprojlim _m \mathcal {O}_{F_m}\), which is identified with an element of \(\Lambda _{\mathcal {O}_{\hat{F}_\infty }}(U)\) via the maps

$$\begin{aligned} y_{F_m/F}: \mathcal {O}_{F_m} \rightarrow \mathcal {O}_{F_m}[{\text {Gal}}(F_m/F)],\quad x\mapsto \sum _{\sigma \in {\text {Gal}}(F_m/F)} x^{\sigma }[\sigma ^{-1}], \end{aligned}$$

(see [26, §3.2]). Thus, the constant term of \(\mathcal {Y}\) as a power series is \(\lim _m {\text {Tr}}_{F_m/F}(x_{F_m})=x_F\), which is a unit of \(\mathcal {O}_F\) since \(\mathcal {O}_F \cdot x_F = \mathcal {O}_F\), from which the lemma follows. \(\square \)

Henceforth, we shall use the same notation for \(\mathcal {Y}\) and \(\overline{\mathcal {Y}}\) for presentational simplicity.

Corollary A.7

There exists a \(\Lambda (\Gamma ^\textrm{ac})\)-basis \((z_1,z_2)\) of \(H^1_{\textrm{Iw}}(K_\mathfrak {p},T)\) such that

$$\begin{aligned} \underline{\textrm{Col}}(z_1) = \mathcal {Y}(X,0), \ \underline{\textrm{Col}}(z_2) = \mathcal {Y}(a',1), \end{aligned}$$

where \(a'=\frac{2-a_p}{p-1}\).

Proof

It can be checked that \(X\oplus 0,\) and \(a'\oplus 1\) form a \(\Lambda \)-basis of the image of \(\mathcal {Y}^{-1}\underline{\textrm{Col}}\). Thus, the result follows from the injectivity of \(\underline{\textrm{Col}}\) (see [4, Proof of Corollary 4.6]). \(\square \)

Next we compare the maps \(\mathcal {L}_{T}^\textrm{ac}\) and \(\tilde{\Omega }^{\epsilon }_{V,1}\) constructed by Kobayashi [19, §10], using the explicit reciprocity law.

Lemma A.8

There exists a unit in \(u^\epsilon _T\in \Lambda _{\mathcal {O}_{\hat{F}_\infty }}(\Gamma ^\textrm{ac})\) such that

$$\begin{aligned} \mathcal {L}^\textrm{ac}_T\circ \tilde{\Omega }^{\epsilon }_{V,1}= u^\epsilon _T\ell _0, \end{aligned}$$

where \(\ell _0=\log (\gamma )/\log (\kappa (\gamma ))\) and \(\kappa \) is the Lubin–Tate character attached to the extension \(K^\textrm{ac}_\mathfrak {p}/\mathbb {Q}_p\).

Proof

Let \(\textrm{Col}^\epsilon _e:H^1_{\textrm{Iw}}(K_\mathfrak {p}^\textrm{ac},T)\rightarrow \mathscr {H}_\infty (\Gamma ^\textrm{ac})\otimes \mathbb {D}_\textrm{cris}(T)\) be the map defined in [10, Definition 3.3], where e is some fixed unit in \(\Lambda (\Gamma ^{\textrm{ac}})\) (note that we are taking \(F=\mathbb {Q}_p\) in loc. cit.). Upon comparing the interpolation formulae given in Theorem 3.4 of op. cit. and [9, Theorem 5.1], we see that \(\mathcal {L}_T^\textrm{ac}\) and \(\textrm{Col}^\epsilon _e\) agree up to a unit. Therefore, it is enough to study the composition \(\textrm{Col}^\epsilon _e\) and \(\tilde{\Omega }_{V,1}^\epsilon \).

Let \([-,-]_V\) and \(\langle -,-\rangle _{F_\infty }\) be the pairings defined in [10, §3.3]. Then (3,7) in op. cit. says that

$$\begin{aligned}{}[\textrm{Col}_e^\epsilon (z),\eta ]_V=\langle z,\Omega _{V,1}^\epsilon (\eta \otimes e)\rangle _{F_\infty } \end{aligned}$$

for all \(z\in H^1_{\textrm{Iw}}(K_\mathfrak {p}^\textrm{ac},T)\) and \(\eta \in \mathbb {D}_\textrm{cris}(T)\). Thus, given any \(x\in \mathscr {H}_\infty (\Gamma ^\textrm{ac})\otimes \mathbb {D}_\textrm{cris}(T)\), we deduce from the explicit reciprocity law (see [19, Theorem 10.13])

$$\begin{aligned} {[}\textrm{Col}_e^\epsilon \circ \Omega _{V,1}^\epsilon (x),\eta ]_V&=\langle \Omega _{V,1}^\epsilon (x),\Omega _{V,1}^\epsilon (\eta \otimes e)\rangle _{F_\infty }\\&=\langle \ell _0 \Omega _{V,0}^\epsilon (x),\Omega _{V,1}^\epsilon (\eta \otimes e)\rangle _{F_\infty }\\&=[ \ell _0 x,\eta \otimes e]_V\\&=[ \ell _0e^\iota x,\eta ]_V. \end{aligned}$$

(Note that the image of \(\delta _{-1}\) in loc. cit. is sent to the trivial element in \(\Gamma ^\textrm{ac}\).) Therefore, the result follows from the non-degeneracy of the pairing \([-,-]_V\). \(\square \)

Corollary A.9

Let \(e_{\alpha },e_{\beta }\) be a \(\varphi \)-eigenbasis of \(\mathbb {D}_{\textrm{cris}}(V)\) given by

$$\begin{aligned} (e_\alpha ,e_\beta ) = (\omega ,\varphi (\omega ))S = (\omega ,\varphi (\omega )) \begin{pmatrix} 1 &{} 1\\ -\alpha &{} -\beta \\ \end{pmatrix} \end{aligned}$$

(with \(\varphi (e_{\lambda })=\lambda p^{-1}e_{\lambda }\) for \(\lambda \in \{\alpha ,\beta \}\)). The matrix of \(\mathcal {L}_{T}^\textrm{ac}\) with respect to the bases \((z_1,z_2)\) and \((e_{\alpha },e_{\beta })\) is given by

$$\begin{aligned}\mathcal {Y}S^{-1} M_{\log }\cdot \begin{pmatrix} X&{}a'\\ 0&{}1 \end{pmatrix}. \end{aligned}$$

The matrix of \(\tilde{\Omega }^{\epsilon }_{V,1}\) with respect to the same bases is given by

$$\begin{aligned} \frac{u^\epsilon _T \ell _0}{\mathcal {Y}X}\begin{pmatrix} 1 &{} -a' \\ 0 &{} X\\ \end{pmatrix} M_{\log }^{-1}S. \end{aligned}$$

Proof

By Corollary A.7, we have a basis \(z_1,z_2\) of \(H^1_\textrm{Iw}(K_\mathfrak {p},T)\) such that

$$\begin{aligned} (\mathcal {L}_T^\textrm{ac}(z_1),\mathcal {L}_T^\textrm{ac}(z_2)) = (\omega , \varphi (\omega ))M_{\log }\mathcal {Y}\begin{pmatrix} X &{} a'\\ 0 &{} 1\\ \end{pmatrix}. \end{aligned}$$

The affirmation regarding \(\mathcal {L}_T^{\textrm{ac}}\) now follows from the change of variable formula in the definition of \(e_\alpha ,e_\beta \). Taking the inverse of \(\mathcal {L}^\textrm{ac}_T\) in Lemma A.8 gives the matrix for \(\tilde{\Omega }^\epsilon _{V,1}\).

Corollary A.10

For large enough even integers m, the specialization of \(\tilde{\Omega }^\epsilon _{V,1}\) at \(\mathfrak {P}_m=(\Theta _m(X))\) has p-adic valuation matrix

$$\begin{aligned} \begin{pmatrix} -m\cdot \textrm{ord}_p(\alpha ) + \displaystyle \sum _{i=1}^{m/2}\frac{1}{p^{2i-1}} &{} \displaystyle -m\cdot \textrm{ord}_p(\beta ) + \sum _{i=1}^{m/2}\frac{1}{p^{2i-1}} \\ \displaystyle -m\cdot \textrm{ord}_p(\alpha ) + \sum _{i=1}^{ m/2}\frac{1}{p^{2i-1}}+\frac{1}{p^{m-1}(p-1)} &{} \displaystyle -m\cdot \textrm{ord}_p(\beta ) + \sum _{i=1}^{m/2}\frac{1}{p^{2i-1}}+ \frac{1}{p^{m-1}(p-1)}\\ \end{pmatrix} \end{aligned}$$

Proof

By [3, Proposition 2.5], \(\det (M_{\log })\) and \( \ell _0/X\) differ by a unit in \(\Lambda (\Gamma ^\textrm{ac})\). It follows that \(\frac{\ell _0}{X} M_{\log }^{-1}S\) is the adjugate matrix of \(\det (S)S^{-1}M_{\log } = (\alpha -\beta )S^{-1}M_{\log }\), up to a unit. By Lemmas A.4 and A.6, we see that, up to a unit, the matrix of \(\tilde{\Omega }^\epsilon _{V,1}\) given in Corollary A.10 specialized at \(\Theta _m\), is of the form

$$\begin{aligned} \begin{pmatrix} 1 &{} -a' \\ 0 &{} \epsilon _m \end{pmatrix} \begin{pmatrix} s_2/\alpha ^m &{} s_2/\beta ^m\\ -s_1/\alpha ^m &{} -s_1/\beta ^m \end{pmatrix}. \end{aligned}$$

It follows from our assumption that \(v\ge \frac{1}{p+1}\), for an even integer m that is sufficiently large,

$$\begin{aligned} \textrm{ord}_p(s_2) = v+ \sum _{1\le i<m/2}\frac{1}{p^{2i}} = v + \frac{1-1/p^{m}}{p^2-1} > \frac{p-1/p^{m-1}}{p^2-1} = \textrm{ord}_p(s_1). \end{aligned}$$

Since \(a'\) is a p-adic unit, we have \(\textrm{ord}_p(s_2+a's_1) = \textrm{ord}_p(s_1)\). Hence, the result follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, A., Zhao, L. On the BDP Iwasawa main conjecture for modular forms. manuscripta math. 173, 867–888 (2024). https://doi.org/10.1007/s00229-023-01485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-023-01485-4

Mathematics Subject Classification

Navigation