Skip to main content
Log in

A note on the topological stability theorem from \({{\,\textrm{RCD}\,}}\) spaces to Riemannian manifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Inspired by a recent work of Wang-Zhao in [72], in this note we prove that for a fixed n-dimensional closed Riemannian manifold \((M^n, g)\), if an \({{\,\textrm{RCD}\,}}(K, n)\) space \((X, {\textsf{d}}, {\mathfrak {m}})\) is Gromov-Hausdorff close to \(M^n\), then there exists a regular homeomorphism F from X to \(M^n\) such that F is Lipschitz continuous and that \(F^{-1}\) is Hölder continuous, where the Lipschitz constant of F, the Hölder exponent and the Hölder constant of \(F^{-1}\) can be chosen arbitrary close to 1. This is sharp in the sense that in general such a map cannot be improved to being bi-Lipschitz. Moreover if X is smooth, then such a homeomorphism can be chosen as a diffeomorphism. It is worth mentioning that the Lipschitz-Hölder continuity of F improves the intrinsic Reifenberg theorem for closed manifolds with Ricci curvature bounded below established by Cheeger-Colding. The Nash embedding theorem plays a key role in the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Calculus, heat flow and curvature-dimension bounds in metric measure spaces. Proceedings of the ICM 2018, Vol. 1, World Scientific, Singapore, 301–340 (2019)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma \)-finite measure. Trans. of the AMS. 367, 4661–4701 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Honda, S.: New stability results for sequences of metric measure spaces with uniform Ricci bounds from below. Measure theory in non-smooth spaces, 1–51, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw (2017)

  6. Ambrosio, L., Honda, S.: Local spectral convergence in \({{\rm RCD}}^*(K, N)\) spaces. Nonlinear Anal. 177, 1–23 (2018). (Part A)

    MathSciNet  MATH  Google Scholar 

  7. Ambrosio, L., Honda, S., Portegies, J.W., Tewodrose, D.: Embedding of \({{\rm RCD}}^*(K, N)\)-spaces in \(L^2\) via eigenfunctions. J. Funct. Anal. 280(10), 72 (2021). (Paper No. 108968)

    MATH  Google Scholar 

  8. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Mem. Amer. Math. Soc. 262(1270), v+121 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry-Émery Condition, the Gradient Estimates and the Local-to-Global Property of \({{\rm RCD}}^*(K, N)\) Metric Measure Spaces. J. Geom. Anal. 26, 24–56 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Biroli, M., Mosco, U.: A Saint Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl. (4) 169, 125–181 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Brena, C., Gigli, N., Honda, S., Zhu, X.: Weakly non-collapsed \({{\rm RCD}}\) spaces are strongly non-collapsed. ArXiv preprint: arXiv:2110.02420

  12. Bruè, E., Naber, A., Semola, D.: Boundary regularity and stability for spaces with Ricci bounded below. Invent. Math. 228, 777–891 (2022). https://doi.org/10.1007/s00222-021-01092-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Bruè, E., Pasqualetto, E., Semola, D.: Rectifiability of \({{\rm RCD}}(K, N)\) spaces via \(\delta \)-splitting maps. Ann. Fenn. Math. 46(1), 465–482 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Bruè, E., Semola, D.: Constancy of dimension for \({{\rm RCD}}^*(K, N)\) spaces via regularity of Lagrangian flows. Comm. Pure and Appl. Math. 73, 1141–1204 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Cavalletti, F., Milman, E.: The Globalization Theorem for the Curvature Dimension Condition. Invent. Math. 226(1), 1–137 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. 144, 189–237 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46, 406–480 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Cheeger, J., Jiang, W., Naber, A.: Rectifiability of singular sets of non collapsed limit spaces with Ricci curvature bounded below. Ann. of Math. 193, 407–538 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Cheeger, J., Naber, A.: Regularity of Einstein manifolds and the codimension \(4\) conjecture. Ann. of Math. 182, 1093–1165 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Colding, T.H.: Shape of manifolds with positive Ricci curvature. Invent. Math. 124, 175–191 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Colding, T.H.: Large manifolds with positive Ricci curvature. Invent. Math. 124, 193–214 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Colding, T.H.: Ricci curvature and volume convergence. Ann. of Math. 145, 477–501 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. 176, 1173–1229 (2012)

    MathSciNet  MATH  Google Scholar 

  25. De Philippis, G., Marchese, A., Rindler, F.: On a conjecture of Cheeger. In: Measure Theory in Non-Smooth Spaces, 145-155, De Gruyter Open, Warsaw (2017)

  26. De Philippis, G., Gigli, N.: Non-collapsed spaces with Ricci curvature bounded below. J. de l’École polytechnique 5, 613–650 (2018)

    MathSciNet  MATH  Google Scholar 

  27. De Philippis, G., N.-Zimbron, J.: The behavior of harmonic functions on \({{\rm RCD}}\) spaces, manuscripta mathematica (2022). https://doi.org/10.1007/s00229-021-01365-9

  28. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in \({{\rm RCD}}^*(K, N)\) metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Gigli, N.: The splitting theorem in non-smooth context. ArXiv preprint arXiv:1302.5555

  31. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236(1113), vi–91 (2015)

  32. Gigli, N.: Non-smooth differential geometry. Mem. Am. Math. Soc. 251(1196), vi–161 (2018)

  33. Gigli, N., Mondino, A., Savaré, G.: Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. 111, 1071–1129 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Gigli, N., Pasqualetto, E.: Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, arXiv:1611.09645 (2016), to appear in Comm. Anal. Geom

  35. Gigli, N., Pasqualetto, E.: Lectures on Nonsmooth Differential Geometry. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-38613-9

    Article  MATH  Google Scholar 

  36. Gigli, N., Pasqualetto, E.: Behaviour of the reference measure on \({{\rm RCD}}\) spaces under charts. Comm. Anal. Geom. 29(6), 1391–1414 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Gigli, N., Rigoni, C.: Recognizing the flat torus among \({{\rm RCD}}^*(0, N)\) spaces via the study of the first cohomology group. Calc. Var. Partial Differ. Equ. 57(4), 39 (2018). (Paper No. 104)

    MATH  Google Scholar 

  38. Gigli, N., Violo, I.Y.: Monotonicity formulas for harmonic functions in \({{\rm RCD}}(0, N)\) spaces, ArXiv preprint: arXiv:2101.03331 (2021)

  39. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x–101 (2000)

  40. Honda, S.: Elliptic PDEs on compact Ricci limit spaces and applications. Mem. Amer. Math. Soc. 253(1211), v+92 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Honda, S.: New differential operators and non-collapsed \({{\rm RCD}}\) spaces. Geom. Topol. 24(4), 2127–2148 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Honda, S.: Isometric immersions of \({{\rm RCD}}\) spaces. Comment. Math. Helv. 96(3), 515–559 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Honda, S., Mari, L., Rimoldi, M., Veronelli, G.: Density and non-density of \(C^{\infty }_c \hookrightarrow W^{k, p}\) on complete manifolds with curvature bounds. Nonlinear Anal. 211, 26 (2021). (Paper No. 112429)

    MATH  Google Scholar 

  44. Honda, S., Mondello, I.: Sphere theorems for \({{\rm RCD}}\) and stratified spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22(2), 903–923 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Honda, S., Sire, Y.: Sobolev mappings between RCD spaces and applications to harmonic maps: a heat kernel approach arXiv:2105.08578

  46. Jiang, R.: Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal. 266, 1373–1394 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Jiang, R.: The Li-Yau Inequality and Heat Kernels on Metric Measure Spaces. J. Math. Pures Appl. 104, 29–57 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Jiang, R., Li, H., Zhang, H.-C.: Heat Kernel Bounds on Metric Measure Spaces and Some Applications. Potent. Anal. 44, 601–627 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Kapovitch, V.: Perelman’s stability theorem. Surveys in differential geometry. Vol. XI, 103–136, Surv. Differ. Geom., 11, Int. Press, Somerville, MA (2007)

  50. Kapovitch, V., Mondino, A.: On the topology and the boundary of \(N\)-dimensional \({{\rm RCD}}(K, N)\) spaces. Geom. Topol. 25(1), 445–495 (2021)

    MathSciNet  MATH  Google Scholar 

  51. Kell, M., Mondino, A.: On the volume measure of non-smooth spaces with Ricci curvature bounded below. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(2), 593–610 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Kitabeppu, Y.: A Bishop-type inequality on metric measure spaces with Ricci curvature bounded below. Proc. AMS 145, 3137–3151 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Kitabeppu, Y.: A sufficient condition to a regular set being of positive measure on \({{\rm RCD}}\) spaces. Potential Anal. 51(2), 179–196 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Kobayashi, R., Todorov, A.: Polarized period map for genaralized K3 surfaces and the moduli of Einstein metrics. Tohoku Math. J. 39, 145–151 (1987)

    MathSciNet  Google Scholar 

  55. Li, S.: Counterexamples to the \(L^p\)-Calderón-Zygmund estimate on open manifolds. Ann. Global. Anal. Geom. 57, 61–70 (2021)

    Google Scholar 

  56. Lytchak, A., Stadler, S.: Ricci curvature in dimension \(2\). J. Eur. Math. Soc. https://doi.org/10.4171/JEMS/1196

  57. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. 169, 903–991 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Marini, L., Veronelli, G.: The \(L^p\) Calderón-Zygmund inequality on non-compact manifolds of positive curvature. Ann. Global. Anal. Geom. 60, 253–267 (2021)

    MathSciNet  MATH  Google Scholar 

  59. Mondello, I., Mondino, A., Perales R.: An upper bound on the revised first Betti number and a torus stability result for \({{\rm RCD}}\) spaces, arXiv:2104.06208v2, to appear in Comment. Math. Helv

  60. Mondino, A., Naber, A.: Structure theory of metric measure spaces with lower Ricci curvature bounds. J. Eur. Math. Soc. 21, 1809–1854 (2019)

    MathSciNet  MATH  Google Scholar 

  61. Mondino, A., Wei, G.: On the universal cover and the fundamental group of an \({{\rm RCD}}^*(K, N)\)-space. J. Reine Angew. Math. 753, 211–237 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Page, D.: A physical picture of the K3 gravitational instantons. Phys. Lettr. Ser. B 80, 55–57 (1978)

    Google Scholar 

  63. Pan, J., Wei, G.: Examples of Ricci limit spaces with non-integer Hausdorff dimension. Geom. Func. Anal. 32, 676–685 (2022)

    MathSciNet  MATH  Google Scholar 

  64. Perelman, G.: Alexandrov spaces with curvatures bounded from below. II, preprint

  65. Perelman, G.: Manifolds of positive Ricci curvature with almost maximal volume. J. Amer. Math. Soc. 7, 299–305 (1994)

    MathSciNet  MATH  Google Scholar 

  66. Petersen, P.: On eigenvalue pinching in positive Ricci curvature. Invent. Math. 138(1), 1–21 (1999)

    MathSciNet  MATH  Google Scholar 

  67. Pigola, S.: Global Calderón-Zygmund inequalities on complete Riemannian manifolds, arXiv:2011.03220

  68. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differ. Equ. 44(3), 477–494 (2012)

    MATH  Google Scholar 

  69. Simon, M., Topping, P.: Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces. Geom. Topol. 25(2), 913–948 (2021)

    MathSciNet  MATH  Google Scholar 

  70. Sturm, K.-T.: On the geometry of metric measure spaces, I. Acta Math. 196, 65–131 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Sturm, K.-T.: On the geometry of metric measure spaces, II. Acta Math. 196, 133–177 (2006)

    MathSciNet  MATH  Google Scholar 

  72. Wang, B., Zhao, X.: Canonical diffeomorphisms of manifolds near spheres, ArXiv preprint arXiv:2109.14803v1

Download references

Acknowledgements

The both authors wish to thank Elia Bruè and Daniele Semola for fruitful discussions on the paper. They also thank Zhangkai Huang for giving us comments on the paper. Moreover they are grateful to the referee for his/her careful reading on the first version and for giving us very helpful comments. The first named author acknowledges supports of the Grant-in-Aid for Scientific Research (B) of 20H01799, the Grant-in-Aid for Scientific Research (B) of 21H00977 and Grant-in-Aid for Transformative Research Areas (A) of 22H05105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhei Honda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honda, S., Peng, Y. A note on the topological stability theorem from \({{\,\textrm{RCD}\,}}\) spaces to Riemannian manifolds. manuscripta math. 172, 971–1007 (2023). https://doi.org/10.1007/s00229-022-01418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01418-7

Mathematics Subject Classification

Navigation