Skip to main content
Log in

Evolving Compact Locally Convex Curves and Convex Hypersurfaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

A nonlocal curvature flow is investigated to evolve compact locally convex hypersurfaces in the Euclidean space \({\mathbb {E}}^{n+1}\). It is shown that the flow exists globally in all dimensions and deforms the evolving curve into an m-fold circle in the plane if \(n=1\) and drives the evolving hypersurface into a Euclidean sphere if \(n>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differ. Geom. 23, 175–196 (1986)

    Article  MathSciNet  Google Scholar 

  2. Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138, 151–161 (1999)

    Article  MathSciNet  Google Scholar 

  3. Angenent, S.: On the formation of singularities in the curve shortening flow. J. Differ. Geom. 33, 601–633 (1991)

    Article  MathSciNet  Google Scholar 

  4. Brendle, S., Choi, K., Daskalopoulos, P.: Asymptotic behavior of flows by powers of the Gaussian curvature. Acta Mathematica 219, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  5. Brendle, S., Huisken, G.: Mean curvature flow with surgery of mean convex surfaces in \({\mathbb{R}}^3\). Invent. Math. 203, 615–654 (2016)

    Article  MathSciNet  Google Scholar 

  6. Brendle, S., Huisken, G.: Mean curvature flow with surgery of mean convex surfaces in three-manifolds. J. Eur. Math. Soc. 20, 2239–2257 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chen, W.-Y., Wang, X.-L., Yang, M.: Evolution of highly symmetric curves under the shrinking curvature flow. Math. Methods Appl. Sci. 40, 3775–3783 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chow, B.: Deforming convex hypersurfaces by the \(n\)th root of the Gaussian curvature. J. Differ. Geom. 22, 117–138 (1985)

    Article  Google Scholar 

  9. Erdoğan, M., Yilmaz, G.: A characterization of convex hypersurfaces in Hadamard manifolds. Math. Scand. 97, 40–48 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gao, L.-Y., Zhang, Y.-T.: Evolving convex surfaces to constant width ones. Internat. J. Math. 28, 120–137 (2017)

    Article  MathSciNet  Google Scholar 

  11. Guan, P.-F., Ni, L.: Entropy and a convergence theorem for Gauss curvature flow in high dimension. J. Eur. Math. Soc. 19, 3735–3761 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hadamard, J.: Les surfaces à courbures opposées et leurs linges géodésiquese. J. Math. Pures Appl. 4, 27–73 (1898)

    MATH  Google Scholar 

  13. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  14. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)

    Article  MathSciNet  Google Scholar 

  15. Huisken, G.: Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84, 463–480 (1986)

    Article  MathSciNet  Google Scholar 

  16. Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183, 45–70 (1999)

    Article  MathSciNet  Google Scholar 

  18. Hopf, H.: Differential geometry in the large. Notes taken by Peter Lax and John Gray. With a preface by S. S. Chern. Lecture Notes in Mathematics, 1000. Springer, Berlin, 1983. vii+184 pp

  19. Gage, M.E., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986)

    Article  MathSciNet  Google Scholar 

  20. Lin, Y.-C., Tsai, D.-H.: Evolving a convex closed curve to another one via a length-preserving linear flow. J. Differ. Equ. 247, 2620–2636 (2009)

    Article  MathSciNet  Google Scholar 

  21. McCoy, J.A.: The surface area preserving mean curvature flow. Asian J. Math. 7, 7–30 (2003)

    Article  MathSciNet  Google Scholar 

  22. McCoy, J.A.: The mixed volume preserving mean curvature flow. Math. Zeit. 246, 155–166 (2004)

    Article  MathSciNet  Google Scholar 

  23. Pan, S.-L., Yang, J.-N.: On a non-local perimeter-preserving curve evolution problem for convex plane curves. Manuscripta Math. 127, 469–484 (2008)

    Article  MathSciNet  Google Scholar 

  24. Smoczyk, K.: A representation formula for the inverse harmonic mean curvature flow. Elem. Math. 60, 57–65 (2005)

    Article  MathSciNet  Google Scholar 

  25. Wang, X.-L., Li, H.-L., Chao, X.-L.: Length-preserving evolution of immersed closed curves and the isoperimetric inequality. Pac. J. Math. 290, 467–479 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wang, X.-L., Wo, W.-F., Yang, M.: Evolution of non-simple closed curves in the area-preserving curvature flow. Proc. R. Soc. Edinb. Sect. A 148, 659–668 (2018)

    Article  MathSciNet  Google Scholar 

  27. Xu, H.-W., Leng, Y., Zhao, E.-T.: Volume-preserving mean curvature flow of hypersurfaces in space forms. Internat. J. Math. 25, 247–261 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Laiyuan Gao is supported by National Natural Science Foundation of China (No.11801230). This work is partially completed when the first author visited University of California, San Diego. He thanks Prof. Lei Ni and Prof. Bennett Chow for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhang, Y. Evolving Compact Locally Convex Curves and Convex Hypersurfaces. manuscripta math. 167, 365–375 (2022). https://doi.org/10.1007/s00229-021-01278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01278-7

Mathematics Subject Classification

Navigation