Skip to main content
Log in

Additive structure of totally positive quadratic integers

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let \(K=\mathbb {Q}(\sqrt{D})\) be a real quadratic field. We consider the additive semigroup \(\mathcal {O}_K^+(+)\) of totally positive integers in K and determine its generators (indecomposable integers) and relations; they can be nicely described in terms of the periodic continued fraction for \(\sqrt{D}\). We also characterize all uniquely decomposable integers in K and estimate their norms. Using these results, we prove that the semigroup \(\mathcal {O}_K^+(+)\) completely determines the real quadratic field K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blomer, V., Kala, V.: Number fields without \(n\)-ary universal quadratic forms. Math. Proc. Camb. Philos. Soc. 159(2), 239–252 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Blomer, V., Kala, V.: On the rank of universal quadratic forms over real quadratic fields. Doc. Math. 23, 15–34 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Brunotte, H.: Zur Zerlegung totalpositiver Zahlen in Ordnungen totalreeller algebraischer Zahlkörper [On the decomposition of totally positive numbers in orders of totally real algebraic number fields]. Arch. Math. (Basel) 41(6), 502–503 (1983). (in German)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cornelissen, G., de Smit, B., Li, X., Marcolli, M., Smit, H.: Characterization of global fields by Dirichlet L-series. Res. Number Theory 5(1), 5–7 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Vol. II, Mathematical Surveys, No. 7. American Mathematical Society, Providence (1967)

    Google Scholar 

  6. Dress, A., Scharlau, R.: Indecomposable totally positive numbers in real quadratic orders. J. Number Theory 14(3), 292–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gaßmann, F.: Bemerkungen zur vorstehenden arbeit von Hurwitz: Über beziehungen zwischen den primidealen eines algebraischen körpers und den substitutionen seiner gruppen [Note on the hereinabove work of Hurwitz: Relations between the primitives of an algebraic body and the substitutions of its groups]. Math. Z. 25, 665–675 (1926). (in German)

    Google Scholar 

  8. Ginsburg, S.: The Mathematical Theory of Context-free Languages. McGraw-Hill Book Co., New York (1966)

    MATH  Google Scholar 

  9. Grillet, P.A.: Semigroups, Monographs and Textbooks in Pure and Applied Mathematics, An Introduction to the Structure Theory. Marcel Dekker, Inc., New York (1995)

    Google Scholar 

  10. García-Sánchez, P.A., Rosales, J.C.: Numerical semigroups generated by intervals. Pac. J. Math. 191(1), 75–83 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jang, S.W., Kim, B.M.: A refinement of the Dress-Scharlau theorem. J. Number Theory 158, 234–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kala, V.: Norms of indecomposable integers in real quadratic fields. J. Number Theory 166, 193–207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kala, V.: Universal quadratic forms and elements of small norm in real quadratic fields. Bull. Aust. Math. Soc. 94(1), 7–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, B.M.: Universal octonary diagonal forms over some real quadratic fields. Comment. Math. Helv. 75(3), 410–414 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kala, V., Korbelář, M.: Idempotence of finitely generated commutative semifields. Forum Math. 30(6), 1461–1474 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kubota, T.: Galois group of the maximal abelian extension over an algebraic number field. Nagoya Math. J. 12, 177–189 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kala, V., Yatsyna, P.: Lifting problem for universal quadratic forms (2018). arXiv:1808.02262

  18. Neukirch, J.: Kennzeichnung der \(p\)-adischen und der endlichen algebraischen Zahlkörper [Characteristic of \(p\)-adic and finite algebraic number field extensions]. Invent. Math. 6, 296–314 (1969)

    MathSciNet  MATH  Google Scholar 

  19. Perron, O.: Die Lehre von den Kettenbrüchen [The Theory of Continued Fractions], 1st edn. B. G. Teubner Verlag, Leipzig (1913). (in German)

    MATH  Google Scholar 

  20. Siegel, C.L.: Sums of \(m\)th powers of algebraic integers. Ann. Math. (2) 46, 313–339 (1945)

    MathSciNet  MATH  Google Scholar 

  21. Tinková, M., Voutier, P.: Indecomposable integers in real quadratic fields (2018). arXiv:1812.03460

  22. Uchida, K.: Isomorphisms of Galois groups. J. Math. Soc. Jpn. 28(4), 617–620 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yatsyna, P.: A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field. Comment. Math. Helv. 94, 221–239 (2019). https://doi.org/10.4171/CMH/459

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for pointing out that we were using the incorrect notion of semigroup presentation and for several other very useful comments that helped us improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Hejda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We gratefully acknowledge support by Czech Science Foundation (GAČR) Grant 17-04703Y (TH,VK) and partial support by Charles University Research Centre Program UNCE/SCI/022 (VK).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejda, T., Kala, V. Additive structure of totally positive quadratic integers. manuscripta math. 163, 263–278 (2020). https://doi.org/10.1007/s00229-019-01143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01143-8

Mathematics Subject Classification

Navigation