Skip to main content
Log in

A procedure for computing the log canonical threshold of a binomial ideal

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We present a procedure for computing the log-canonical threshold of an arbitrary ideal generated by binomials and monomials. The computation of the log canonical threshold is reduced to the problem of computing the minimum of a function, which is defined in terms of the generators of the ideal. The minimum of this function is attained at some ray of a fan which only depends on the exponents of the monomials appearing in the generators of the ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992). ACM Symposium on Computational Geometry (North Conway, NH) (1991)

  2. Bravo, A.M., Encinas, S., Villamayor, O.: A simplified proof of desingularization and applications. Rev. Mat. Iberoam. 21(2), 349–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blickle, M., Lazarsfeld, R.: An informal introduction to multiplier ideals. In: Avramov, L.L., Green, M., Huneke, C., Smith, K.E., Sturmfels, B. (eds.) Trends in Commutative Algebra, volume 51 of Mathematical Sciences Research Institute Publications, pp. 87–114. Cambridge University Press, Cambridge (2004)

  4. Blickle, M.: Multiplier ideals and modules on toric varieties. Math. Z. 248(1), 113–121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    Google Scholar 

  6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6—A Computer Algebra System for Polynomial Computations. http://www.singular.uni-kl.de (2012)

  7. Ein, L., Lazarsfeld, R., Smith, K.E., Varolin, D.: Jumping coefficients of multiplier ideals. Duke Math. J. 123(3), 469–506 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84(1), 1–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Encinas, S., Villamayor, O.: A course on constructive desingularization and equivariance. In: Hauser, H., Lipman, J., Oort, F., Quirós, A. (eds.) Resolution of Singularities (Obergurgl, 1997), volume 181 of Progress in Mathematics, pp. 147–227. Birkhäuser, Basel (2000)

  10. Fulton, W.: Introduction to Toric Varieties, Volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton. The William H. Roever Lectures in Geometry (1993)

  11. Goward Jr., R.A.: A simple algorithm for principalization of monomial ideals. Trans. Am. Math. Soc. 357(12), 4805–4812 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hauser, H.: The Hironaka theorem on resolution of singularities (or: A proof we always wanted to understand). Bull. Am. Math. Soc. (N.S.) 40(3), 323–403 (2003) (electronic)

  13. Howald, J.A.: Multiplier ideals of monomial ideals. Trans. Am. Math. Soc. 353(7), 2665–2671 (2001) (electronic)

  14. Lazarsfeld, R.: Positivity in Algebraic Geometry. II, Volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2004). Positivity for vector bundles, and multiplier ideals

  15. Lazarsfeld, R.: A short course on multiplier ideals. In: Analytic and Algebraic Geometry, Volume 17 of IAS/Park City Mathematics Series, pp. 451–494. American Mathematical Society, Providence (2010)

  16. Oda, T.: Convex Bodies and Algebraic Geometry, Volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin (1988). An introduction to the theory of toric varieties (Translated from the Japanese)

  17. Pérez, P.D.G., Teissier, B.: Embedded resolutions of non necessarily normal affine toric varieties. C. R. Math. Acad. Sci. Paris 334(5), 379–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pérez, P.D.G., Teissier, B.: Toric geometry and the Semple-Nash modification. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108(1), 1–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shibuta, T., Takagi, S.: Log canonical thresholds of binomial ideals. Manuscr. Math. 130(1), 45–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Teissier, B.: Monomial ideals, binomial ideals, polynomial ideals. In: Avramov, L.L., Green, M., Huneke, C., Smith, K.E., Sturmfels, B. (eds.) Trends in Commutative Algebra, Volume 51 of Mathematical Sciences Research Institute Publications, pp. 211–246. Cambridge University Press, Cambridge (2004)

  21. Thompson, H.M.: Multiplier ideals of monomial space curves. Proc. Am. Math. Soc. Ser. B 1, 33–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeillinger, D.: A short solution to Hironaka’s polyhedra game. Enseign. Math. (2) 52(1–2), 143–158 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Encinas.

Additional information

The authors were partially supported by MTM2012-35849 and MTM2015-68524-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, R., Encinas, S. A procedure for computing the log canonical threshold of a binomial ideal. manuscripta math. 155, 141–181 (2018). https://doi.org/10.1007/s00229-017-0929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0929-4

Mathematics Subject Classification

Navigation