Skip to main content
Log in

Understanding hemoglobin contribution to high-dose methotrexate disposition—population pharmacokinetics in pediatric patients with hematological malignancies

  • Research
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to develop a population pharmacokinetic model for methotrexate (MTX) during high-dose treatment (HDMTX) in pediatric patients with acute lymphoblastic leukemia (ALL) and non-Hodgkin’s lymphoma (NHL) and to describe the influence of variability factors.

Methods

The study included 50 patients of both sexes (aged 1–18 years) who received 3 or 5 g/m2 of HDMTX. A nonlinear mixed effect modeling approach was applied for data analysis. Parameter estimation was performed by first-order conditional estimation method with interaction (FOCEI), whereas stepwise covariate modeling was used to assess variability factors.

Results

The final model is a two-compartment model that incorporates the effect of body surface area and the influence of hemoglobin and serum creatinine on MTX clearance (CL). Population pharmacokinetic values for a typical subject were estimated at 5.75 L/h/m2 for clearance (CL), 21.3 L/m2 for volume of the central compartment (V1), 8.2 L/m2 for volume of the peripheral compartment (V2), and 0.087 L/h/m2 for intercompartmental clearance (Q). According to the final model, MTX CL decreases with increasing serum creatinine, whereas a positive effect was captured for hemoglobin. A difference of almost 32% in MTX CL was observed among patients’ hemoglobin values reported in the study.

Conclusion

The developed population pharmacokinetic model can contribute to the therapy optimization during HDMTX in pediatric patients with ALL and NHL. In addition to renal function and body weight, it describes the influence of hemoglobin on CL, allowing better understanding of its contribution to the disposition of HDMTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia (ALL IC-BFM 2009) (2009) Final version of therapy protocol from August-14-2009 [Internet]. https://www.bialaczka.org/wp-content/uploads/2016/10/ALLIC_BFM_2009.pdf. Accessed June 2023

  2. Pillon M, Arico M, Mussolin L, Carraro E, Conter V, Sala A, Buffardi S, Garaventa A, D’Angelo P, Lo Nigro L, Santoro N, Piglione M, Lombardi A, Porta F, Cesaro S, Moleti ML, Casale F, Mura R, d’Amore ES, Basso G, Rosolen A (2015) Long-term results of the AIEOP LNH-97 protocol for childhood lymphoblastic lymphoma. Pediatr Blood Cancer 62(8):1388–1394. https://doi.org/10.1002/pbc.25469

    Article  PubMed  Google Scholar 

  3. International protocol for the treatment of childhood anaplastic large cell lymphoma (ALCL 99) (2000) [Internet]. https://www.skion.nl/workspace/uploads/alcl-99.pdf. Accessed June 2023

  4. Zhang Y, Sun L, Chen X, Zhao L, Wang X, Zhao Z, Mei S (2022) A systematic review of population pharmacokinetic models of methotrexate. Eur J Drug Metab Pharmacokinet 47(2):143–164. https://doi.org/10.1007/s13318-021-00737-6

    Article  CAS  PubMed  Google Scholar 

  5. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21(12):1471–1482. https://doi.org/10.1634/theoncologist.2015-0164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Treon SP, Chabner BA (1996) Concepts in use of high-dose methotrexate therapy. Clin Chem 42(8 Pt 2):1322–1329

    Article  CAS  PubMed  Google Scholar 

  7. Nader A, Zahran N, Alshammaa A, Altaweel H, Kassem N, Wilby KJ (2017) Population pharmacokinetics of intravenous methotrexate in patients with hematological malignancies: utilization of routine clinical monitoring parameters. Eur J Drug Metab Pharmacokin 42(2):221–228. https://doi.org/10.1007/s13318-016-0338-1

    Article  CAS  Google Scholar 

  8. Skoric B, Kuzmanovic M, Jovanovic M, Miljkovic B, Micic D, Jovic M, Jovanovic A, Vucicevic K (2023) Methotrexate concentrations and associated variability factors in high dose therapy of children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Pediatr Hematol Oncol 40(5):446–457. https://doi.org/10.1080/08880018.2023.2168809

  9. Mould DR, Upton RN (2013) Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT: PSP 2(4):e38. https://doi.org/10.1038/psp.2013.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roganović M, Homšek A, Jovanović M, Topić Vučenović V, Ćulafić M, Miljković B, Vučićević K (2021) Concept and utility of population pharmacokinetic and pharmacokinetic/pharmacodynamic models in drug development and clinical practice. Arh farm 71(4):336–353. https://doi.org/10.5937/arhfarm71-32901

    Article  Google Scholar 

  11. Mei S, Li X, Jiang X, Yu K, Lin S, Zhao Z (2018) Population pharmacokinetics of high-dose methotrexate in patients with primary central nervous system lymphoma. J Pharm Sci 107(5):1454–1460. https://doi.org/10.1016/j.xphs.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  12. Faltaos DW, Hulot JS, Urien S, Morel V, Kaloshi G, Fernandez C, Xuan k H, Leblond V, Lechat P (2006) Population pharmacokinetic study of methotrexate in patients with lymphoid malignancy. Cancer Chemother Pharmacol 58(5):626–633. https://doi.org/10.1007/s00280-006-0202-0

    Article  CAS  PubMed  Google Scholar 

  13. Shi ZY, Liu YO, Gu HY, Xu XQ, Yan C, Yang XY, Yan D (2020) Population pharmacokinetics of high-dose methotrexate in Chinese pediatric patients with medulloblastoma. Biopharm Drug Dispos 41(3):101–110. https://doi.org/10.1002/bdd.2221

    Article  CAS  PubMed  Google Scholar 

  14. Fukuhara K, Ikawa K, Morikawa N, Kumagai K (2008) Population pharmacokinetics of high-dose methotrexate in Japanese adult patients with malignancies: a concurrent analysis of the serum and urine concentration data. J Clin Pharm Ther 33(6):677–684. https://doi.org/10.1111/j.1365-2710.2008.00966.x

    Article  CAS  PubMed  Google Scholar 

  15. Panetta JC, Roberts JK, Huang J, Lin T, Daryani VM, Harstead KE, Patel YT, Onar-Thomas A, Campagne O, Ward DA, Broniscer A, Robinson G, Gajjar A, Stewart CF (2020) Pharmacokinetic basis for dosing high-dose methotrexate in infants and young children with malignant brain tumours. Br J Clin Pharmacol 86(2):362–371. https://doi.org/10.1111/bcp.14160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pai MP, Debacker KC, Derstine B, Sullivan J, Su GL, Wang SC (2020) Comparison of body size, morphomics, and kidney function as covariates of high-dose methotrexate clearance in obese adults with primary central nervous system lymphoma. Pharmacother 40(4):308–319. https://doi.org/10.1002/phar.2379

    Article  CAS  Google Scholar 

  17. Taylor ZL, Mizuno T, Punt NC, Baskaran B, Navarro Sainz A, Shuman W, Felicelli N, Vinks AA, Heldrup J, Ramsey LB (2020) MTXPK.org: a clinical decision support tool evaluating high-dose methotrexate pharmacokinetics to inform post-infusion care and use of glucarpidase. Clin Pharmacol Ther 108(3):635–643. https://doi.org/10.1002/cpt.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johansson AM, Hill N, Perisoglou M, Whelan J, Karlsson MO, Standing JF (2011) A population pharmacokinetic/pharmacodynamic model of methotrexate and mucositis scores in osteosarcoma. Ther Drug Monit 33(6):711–718. https://doi.org/10.1097/FTD.0b013e31823615e1

    Article  CAS  PubMed  Google Scholar 

  19. Kawakatsu S, Nikanjam M, Lin M, Le S, Saunders I, Kuo DJ, Capparelli EV (2019) Population pharmacokinetic analysis of high-dose methotrexate in pediatric and adult oncology patients. Cancer Chemother Pharmacol 84(6):1339–1348. https://doi.org/10.1007/s00280-019-03966-4

    Article  CAS  PubMed  Google Scholar 

  20. Jonsson P, Skarby T, Heldrup J, Schroder H, Hoglund P (2011) High dose methotrexate treatment in children with acute lymphoblastic leukaemia may be optimised by a weight-based dose calculation. Pediatric Blood Cancer 57(1):41–46. https://doi.org/10.1002/pbc.22999

    Article  PubMed  Google Scholar 

  21. Hui KH, Chu HM, Fong PS, Cheng WTF, Lam TN (2019) Population pharmacokinetic study and individual dose adjustments of high-dose methotrexate in Chinese pediatric patients with acute lymphoblastic leukemia or osteosarcoma. J Clin Pharmacol 59(4):566–577. https://doi.org/10.1002/jcph.1349

    Article  CAS  PubMed  Google Scholar 

  22. Wright KD, Panetta JC, Onar-Thomas A, Reddick WE, Patay Z, Qaddoumi I, Broniscer A, Robinson G, Boop FA, Klimo P Jr, Ward D, Gajjar A, Stewart CF (2015) Delayed methotrexate excretion in infants and young children with primary central nervous system tumors and postoperative fluid collections. Cancer Chemother Pharmacol 75(1):27–35. https://doi.org/10.1007/s00280-014-2614-6

    Article  CAS  PubMed  Google Scholar 

  23. Kotnik BF, Grabnar I, Grabar PB, Dolzan V, Jazbec J (2011) Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol 67(10):993–1006. https://doi.org/10.1007/s00228-011-1046-z

    Article  CAS  Google Scholar 

  24. Leveque D, Santucci R, Gourieux B, Herbrecht R (2011) Pharmacokinetic drug-drug interactions with methotrexate in oncology. Expert Rev Clin Pharmacol 4(6):743–750. https://doi.org/10.1586/ecp.11.57

    Article  CAS  PubMed  Google Scholar 

  25. Dupuis C, Mercier C, Yang C, Monjanel-Mouterde S, Ciccolini J, Fanciullino R, Pourroy B, Deville JL, Duffaud F, Bagarry-Liegey D, Durand A, Iliadis A, Favre R (2008) High-dose methotrexate in adults with osteosarcoma: a population pharmacokinetics study and validation of a new limited sampling strategy. Anticancer Drugs 19(3):267–273. https://doi.org/10.1097/cad.0b013e3282f21376

    Article  CAS  PubMed  Google Scholar 

  26. Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ (Eds). NONMEM users guides (7.5.0). ICON plc, Gaithersburg, Maryland (1989–2021) [Internet]. https://nonmem.iconplc.com. Accessed June 2023

  27. R Core Team (2016) R: A language and environment for statistical computing. Vienna, Austria [Internet]. http://www.R-project.org. Accessed June 2023

  28. Lexicomp Online, Lexi-Interact. Waltham, MA: UpToDate, Inc.; July 30, 2021 [Internet]. https://online.lexi.com. Accessed Oct 2022

  29. Hooker AC, Staatz CE, Karlsson MO (2007) Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res 24(12):2187–2197. https://doi.org/10.1007/s11095-007-9361-x

    Article  CAS  PubMed  Google Scholar 

  30. Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82(1):17–20. https://doi.org/10.1038/sj.clpt.6100241

    Article  CAS  PubMed  Google Scholar 

  31. Parke J, Holford NH, Charles BG (1999) A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed 59(1):19–29. https://doi.org/10.1016/s0169-2607(98)00098-4

    Article  CAS  PubMed  Google Scholar 

  32. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13(2):143–151. https://doi.org/10.1208/s12248-011-9255-z

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beechinor RJ, Thompson PA, Hwang MF, Vargo RC, Bomgaars LR, Gerhart JG, Dreyer ZE, Gonzalez D (2019) The population pharmacokinetics of high-dose methotrexate in infants with acute lymphoblastic leukemia highlight the need for bedside individualized dose adjustment: a report from the children’s oncology group. Clin Pharmacokinet 58(7):899–910. https://doi.org/10.1007/s40262-018-00734-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jovanović M, Vučićević K (2020) Pediatric pharmacokinetic considerations and implications for drug dosing. Arh farm 72(3):340–352. https://doi.org/10.5937/arhfarm72-37605

    Article  Google Scholar 

  35. Ruhs H, Becker A, Drescher A, Panetta JC, Pui CH, Relling MV, Jaehde U (2012) Population PK/PD model of homocysteine concentrations after high-dose methotrexate treatment in patients with acute lymphoblastic leukemia. PLoS ONE 7(9):e46015. https://doi.org/10.1371/journal.pone.0046015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Beaumais TA, Jacqz-Aigrain E (2012) Intracellular disposition of methotrexate in acute lymphoblastic leukemia in children. Curr Drug Metab 13(6):822–834. https://doi.org/10.2174/138920012800840400

    Article  PubMed  Google Scholar 

  37. Min Y, Qiang F, Peng L, Zhu Z (2009) High dose methotrexate population pharmacokinetics and Bayesian estimation in patients with lymphoid malignancy. Biopharm Drug Dispos 30(8):437–447. https://doi.org/10.1002/bdd.678

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Ministry of Science, Technological Development and Innovation, Republic of Serbia, through Grant Agreement with the University of Belgrade-Faculty of Pharmacy (No: 451–03-47/2023–01/200161).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, research design, and project supervision: M.K. and K.V.; data curation: B.Š.; population analysis: M.J. and B.Š.; interpretation of the results: M.K., K.V., M.J., and B.Š.; writing—original draft preparation: M.J. and B.Š.; review and editing: M.K., B.M., and K.V. M.J. and B. Š. contributed equally to this paper and share first authorship. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Katarina Vučićević.

Ethics declarations

Ethics approval

The Ethics Committee of the Institute for Mother and Child Healthcare of Serbia “Dr Vukan Čupić” approved the study protocol and retrospective collection of data from medical records.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Škorić, B., Jovanović, M., Kuzmanović, M. et al. Understanding hemoglobin contribution to high-dose methotrexate disposition—population pharmacokinetics in pediatric patients with hematological malignancies. Eur J Clin Pharmacol 80, 697–705 (2024). https://doi.org/10.1007/s00228-024-03642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-024-03642-4

Keywords

Navigation