Skip to main content

Advertisement

Log in

Incremental net benefit of lipid-lowering therapy with PCSK9 inhibitors: a systematic review and meta-analysis of cost-utility studies

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

Proprotein convertase subtilisin/kexin 9 inhibitors (PCSK9i) are monoclonal antibodies that lower lipid levels. Although several cardiovascular outcome trials reported the effectiveness of PCSK9i, the evidence on cost-effectiveness is mixed. We systematically reviewed the evidence and synthesized incremental net benefit (INB) to quantify pooled cost-effectiveness.

Methods

We systematically searched for full economic evaluation studies reporting outcomes of PCSK9i compared with other lipid-lowering pharmacotherapies. We searched PubMed, Embase, Scopus, and Tufts Registry for eligible studies up to August 2021, adhering to preferred reporting items for systematic reviews and meta-analyses guidelines. We pooled INB in US$ with a 95% confidence interval using a random-effects model. We assessed heterogeneity using the Cochran Q test and I2 statistics. We used the modified economic evaluations bias (ECOBIAS) checklist to evaluate the quality of selected studies.

Results

Twenty-three studies were eligible, mainly from high-income countries (HIC). The pooled INB (INBp) of PCSK9i versus other lipid-lowering pharmacotherapies were estimated from n = 24 comparisons, with high heterogeneity (I2 = 99.99). The INBp (95% CI) was $ − 78,207 (− 120,422; − 35,993) or € − 52,526 (− 80,879; − 24,174) (conversion factor 1 US$ = 0.67€) which shows that PCSK9i was not significantly cost-effective when compared to other standard therapies. On subgroup analysis PCSK9i was significantly not cost-effective [$ − 23,672 (− 24,061; − 23,282)] compared to other lipid-lowering pharmacotherapies in HICs, upper-middle-income countries [$ − 158,412 (− 241,738; − 75,086)] or when the target population was CVD [$ − 109,343 (− 158,968; − 59,717)]; and for treatment subgroup: against placebo or no treatment [$ − 79,018 (− 79,649; − 78,388 PCSK9)] and standard statin therapies [$ − 131,833 (− 173,449; − 90,216)]. The sensitivity analysis revealed that the findings are not robust for HICs and the treatment subgroups.

Conclusion

PCSK9 inhibitors are not cost-effective compared to other lipid-lowering pharmacotherapies in HICs. Further, current pieces of evidence are predominantly from HICs with largely lacking evidence from other economies.

Prospero registration

ID CRD42020206043.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Karr S (2017) Epidemiology and management of hyperlipidemia. Am J Manag Care 23(9 Suppl):S139–S148

    PubMed  Google Scholar 

  2. Navarese EP, Robinson JG, Kowalewski M et al (2018) Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. JAMA 319(15):1566–1579. https://doi.org/10.1001/jama.2018.2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stone NJ, Robinson JG, Lichtenstein AH et al (2014) Treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: synopsis of the 2013 American College of Cardiology/American Heart Association cholesterol guideline. Ann Intern Med 160(5):339–343. https://doi.org/10.7326/M14-0126

    Article  PubMed  Google Scholar 

  4. Efficacy and safety (2015) Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. The Lancet 385(9976):1397–1405. https://doi.org/10.1016/S0140-6736(14)61368-4

  5. Mihaylova B, Emberson J, Blackwell L et al (2012) The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet (London, England) 380(9841):581–590

    Article  CAS  Google Scholar 

  6. Bavry AA, Mood GR, Kumbhani DJ, Borek PP, Askari AT, Bhatt DL (2007) Long-term benefit of statin therapy initiated during hospitalization for an acute coronary syndrome: a systematic review of randomized trials. Am J Cardiovasc Drugs 7(2):135–141. https://doi.org/10.2165/00129784-200707020-00005

    Article  CAS  PubMed  Google Scholar 

  7. Brugts JJ, Yetgin T, Hoeks SE et al (2009) The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ 338(jun30 1):b2376-b2376. https://doi.org/10.1136/bmj.b2376

  8. Tataronis GR (2006) Statin-related adverse events: a meta-analysis. Clinical Therapeutics 28(1)

  9. Boekholdt SM, Hovingh GK, Mora S et al (2014) Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol 64(5):485–494

    Article  CAS  Google Scholar 

  10. Chaudhary R, Garg J, Shah N, Sumner A (2017) PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol 9(2):76–91. https://doi.org/10.4330/wjc.v9.i2.76

    Article  PubMed  PubMed Central  Google Scholar 

  11. McDonagh M, Peterson K, Holzhammer B, Fazio S (2016) A systematic review of PCSK9 inhibitors alirocumab and evolocumab. J Manag Care Spec Pharm 22(6):641–653q. https://doi.org/10.18553/jmcp.2016.22.6.641

    Article  PubMed  Google Scholar 

  12. Sabatine MS, Giugliano RP, Keech AC et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376(18):1713–1722. https://doi.org/10.1056/NEJMoa1615664

    Article  CAS  PubMed  Google Scholar 

  13. Baruch A, Mosesova S, Davis JD et al (2017) Effects of RG7652, a monoclonal antibody against PCSK9, on LDL-C, LDL-C subfractions, and inflammatory biomarkers in patients at high risk of or with established coronary heart disease (from the phase 2 EQUATOR study). Am J Cardiol 119(10):1576–1583. https://doi.org/10.1016/j.amjcard.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  14. Miyosawa K, Watanabe Y, Murakami K et al (2015) New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism. Am J Physiol-Endocrinol Metab 309(2):E177–E190. https://doi.org/10.1152/ajpendo.00528.2014

    Article  CAS  PubMed  Google Scholar 

  15. Yokote K, Suzuki A, Li Y, Matsuoka N, Teramoto T (2019) Pharmacokinetics and exploratory efficacy biomarkers of bococizumab, an anti-PCSK9 monoclonal antibody, in hypercholesterolemic Japanese subjects. Int J Clin Pharmacol Ther 57(12):575–589. https://doi.org/10.5414/CP203418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ridker PM, Revkin J, Amarenco P et al (2017) Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med 376(16):1527–1539. https://doi.org/10.1056/NEJMoa1701488

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz GG, Steg PG, Szarek M et al (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379(22):2097–2107. https://doi.org/10.1056/NEJMoa1801174

    Article  CAS  PubMed  Google Scholar 

  18. Ray KK, Landmesser U, Leiter LA et al (2017) Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med 376(15):1430–1440. https://doi.org/10.1056/NEJMoa1615758

    Article  CAS  PubMed  Google Scholar 

  19. Dicembrini I, Giannini S, Ragghianti B, Mannucci E, Monami M (2019) Effects of PCSK9 inhibitors on LDL cholesterol, cardiovascular morbidity and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials. J Endocrinol Invest 42(9):1029–1039. https://doi.org/10.1007/s40618-019-01019-4

    Article  CAS  PubMed  Google Scholar 

  20. Squizzato A, Suter MB, Nerone M et al (2017) PCSK9 inhibitors for treating dyslipidemia in patients at different cardiovascular risk: a systematic review and a meta-analysis. Intern Emerg Med 12(7):1043–1053. https://doi.org/10.1007/s11739-017-1708-7

    Article  PubMed  Google Scholar 

  21. Lipinski MJ, Benedetto U, Escarcega RO et al (2016) The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur Heart J 37(6):536–545. https://doi.org/10.1093/eurheartj/ehv563

    Article  CAS  PubMed  Google Scholar 

  22. Li C, Lin L, Zhang W et al (2015) Efficiency and safety of proprotein convertase subtilisin/kexin 9 monoclonal antibody on hypercholesterolemia: a meta‐analysis of 20 randomized controlled trials. JAHA 4(6). https://doi.org/10.1161/JAHA.115.001937

  23. Navarese EP, Kolodziejczak M, Schulze V et al (2015) Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med 163(1):40–51. https://doi.org/10.7326/M14-2957

    Article  PubMed  Google Scholar 

  24. Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP (2017) PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 4:CD011748. https://doi.org/10.1002/14651858.CD011748.pub2

  25. Schmidt AF, Carter J-PL, Pearce LS et al (2010) PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 10:CD011748. https://doi.org/10.1002/14651858.CD011748.pub3

  26. Mach F, Baigent C, Catapano AL et al (2020) 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 41(1):111–188. https://doi.org/10.1093/eurheartj/ehz455

    Article  PubMed  Google Scholar 

  27. Hlatky MA, Kazi DS (2017) PCSK9 inhibitors: economics and policy. J Am Coll Cardiol 70(21):2677–2687. https://doi.org/10.1016/j.jacc.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Gandra SR, Villa G, Fonarow GC et al (2016) Cost-effectiveness of LDL-C lowering with evolocumab in patients with high cardiovascular risk in the United States. Clin Cardiol 39(6):313–320. https://doi.org/10.1002/clc.22535

    Article  PubMed  PubMed Central  Google Scholar 

  29. Toth PP, Danese M, Villa G et al (2017) Estimated burden of cardiovascular disease and value-based price range for evolocumab in a high-risk, secondary-prevention population in the US payer context. J Med Econ 20(6):555–564. https://doi.org/10.1080/13696998.2017.1284078

    Article  PubMed  Google Scholar 

  30. Fonarow GC, Keech AC, Pedersen TR et al (2017) Cost-effectiveness of evolocumab therapy for reducing cardiovascular events in patients with atherosclerotic cardiovascular disease. JAMA Cardiol 2(10):1069. https://doi.org/10.1001/jamacardio.2017.2762

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kazi DS, Moran AE, Coxson PG et al (2016) Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA 316(7):743. https://doi.org/10.1001/jama.2016.11004

    Article  CAS  PubMed  Google Scholar 

  32. Korman M, Wisløff T (2018) Modelling the cost-effectiveness of PCSK9 inhibitors vs. ezetimibe through LDL-C reductions in a Norwegian setting. Euro Heart J Cardiovas Pharmacotherapy 4(1):15–22. https://doi.org/10.1093/ehjcvp/pvx010

  33. PRISMA-P Group, Moher D, Shamseer L et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1. https://doi.org/10.1186/2046-4053-4-1

  34. CEA Registry (2021) Center for the Evaluation of Value and Risk in Health. Accessed April 18, 2021. https://cevr.tuftsmedicalcenter.org/databases/cea-registry

  35. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan-a web and mobile app for systematic reviews. Syst Rev 5(1):210. https://doi.org/10.1186/s13643-016-0384-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rohatgi A (2020) WebPlotDigitizer. Accessed April 19, 2021. https://automeris.io/WebPlotDigitizer

  37. Adarkwah CC, van Gils PF, Hiligsmann M, Evers SMAA (2016) Risk of bias in model-based economic evaluations: the ECOBIAS checklist. Expert Rev Pharmacoecon Outcomes Res 16(4):513–523. https://doi.org/10.1586/14737167.2015.1103185

    Article  PubMed  Google Scholar 

  38. Guyatt G, Oxman AD, Akl EA et al (2011) GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clinic Epidemiol 64(4):383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026

  39. Hultcrantz M, Rind D, Akl EA et al (2017) The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol 87:4–13. https://doi.org/10.1016/j.jclinepi.2017.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  40. Crespo C, Monleon A, Díaz W, Ríos M (2014) Comparative efficiency research (COMER): meta-analysis of cost-effectiveness studies. BMC Med Res Methodol 14(1):1–9

    Article  Google Scholar 

  41. Stinnett AA, Mullahy J (1998) Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis. Med Decis Making 18(2_suppl):S68-S80

  42. O’Mahony J (2015) The limitations of Icers in screening interventions and the relative net benefit alternative. Value in Health 18(7):A705

    Article  Google Scholar 

  43. Bagepally BS, Chaikledkaew U, Chaiyakunapruk N, Attia J, Thakkinstian A (2020) Meta-analysis of economic evaluation studies: data harmonisation and methodological issues. In Review https://doi.org/10.21203/rs.3.rs-93779/v1

  44. Haider S, Chaikledkaew U, Thavorncharoensap M, Youngkong S, Islam MA, Thakkinstian A (2019) Systematic review and meta-analysis of cost-effectiveness of rotavirus vaccine in low-income and lower-middle-income countries. In: Vol 6. Oxford University Press US ofz117

  45. Bagepally BS, Gurav YK, Anothaisintawee T, Youngkong S, Chaikledkaew U, Thakkinstian A (2019) Cost utility of sodium-glucose cotransporter 2 inhibitors in the treatment of metformin monotherapy failed type 2 diabetes patients: a systematic review and meta-analysis. Value in Health 22(12):1458–1469. https://doi.org/10.1016/j.jval.2019.09.2750

    Article  PubMed  Google Scholar 

  46. Bagepally BS, Chaikledkaew U, Gurav YK et al (2020) Glucagon-like peptide 1 agonists for treatment of patients with type 2 diabetes who fail metformin monotherapy: systematic review and meta-analysis of economic evaluation studies. BMJ Open Diabetes Res Care 8(1):e001020. https://doi.org/10.1136/bmjdrc-2019-001020

    Article  PubMed  PubMed Central  Google Scholar 

  47. Edejer TT-T WHO guide to cost-effectiveness analysis: making choices in health. World Health Organization

  48. World Bank Country and Lending Groups – World Bank Data Help Desk (2021) Accessed April 18, 2021. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

  49. StataCorp L (2017) Stata statistical software. Release 16.[software]. College Station, TX. Published online

  50. Cheng W-H, Gaudette É, Goldman DP (2017) PCSK9 inhibitors show value for patients and the US health care system. Value in Health 20(10):1270–1278. https://doi.org/10.1016/j.jval.2017.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dressel A, Schmidt B, Schmidt N et al (2019) Cost effectiveness of lifelong therapy with PCSK9 inhibitors for lowering cardiovascular events in patients with stable coronary artery disease: insights from the Ludwigshafen risk and cardiovascular health cohort. Vascul Pharmacol 120:106566. https://doi.org/10.1016/j.vph.2019.106566

    Article  CAS  PubMed  Google Scholar 

  52. Fonarow GC, van Hout B, Villa G, Arellano J, Lindgren P (2019) Updated cost-effectiveness analysis of evolocumab in patients with very high-risk atherosclerotic cardiovascular disease. JAMA Cardiol 4(7):691. https://doi.org/10.1001/jamacardio.2019.1647

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stam-Slob MC, van der Graaf Y, de Boer A, Greving JP, Visseren FLJ (2018) Cost-effectiveness of PCSK9 inhibition in addition to standard lipid-lowering therapy in patients at high risk for vascular disease. Int J Cardiol 253:148–154. https://doi.org/10.1016/j.ijcard.2017.10.080

    Article  PubMed  Google Scholar 

  54. Villa G, Lothgren M, Kutikova L et al (2017) Cost-effectiveness of evolocumab in patients with high cardiovascular risk in Spain. Clin Ther 39(4):771-786.e3. https://doi.org/10.1016/j.clinthera.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  55. Wisløff T, Mundal LJ, Retterstøl K, Igland J, Kristiansen IS (2019) Economic evaluation of lipid lowering with PCSK9 inhibitors in patients with familial hypercholesterolemia: methodological aspects. Atherosclerosis 287:140–146. https://doi.org/10.1016/j.atherosclerosis.2019.06.900

    Article  CAS  PubMed  Google Scholar 

  56. Kongpakwattana K, Ademi Z, Chaiyasothi T et al (2019) Cost-effectiveness analysis of non-statin lipid-modifying agents for secondary cardiovascular disease prevention among statin-treated patients in Thailand. Pharmacoeconomics 37(10):1277–1286. https://doi.org/10.1007/s40273-019-00820-6

    Article  PubMed  Google Scholar 

  57. Kam N, Perera K, Zomer E, Liew D, Ademi Z (2020) Inclisiran as adjunct lipid-lowering therapy for patients with cardiovascular disease: a cost-effectiveness analysis. Pharmacoeconomics 38(9):1007–1020. https://doi.org/10.1007/s40273-020-00948-w

    Article  PubMed  Google Scholar 

  58. Kazi DS, Penko J, Coxson PG, Guzman D, Wei PC, Bibbins-Domingo K (2019) Cost-effectiveness of alirocumab: a just-in-time analysis based on the ODYSSEY outcomes trial. Ann Intern Med 170(4):221. https://doi.org/10.7326/M18-1776

    Article  PubMed  Google Scholar 

  59. Kazi DS, Penko J, Coxson PG et al (2017) Updated cost-effectiveness analysis of PCSK9 inhibitors based on the results of the FOURIER trial. JAMA 318(8):748. https://doi.org/10.1001/jama.2017.9924

    Article  PubMed  PubMed Central  Google Scholar 

  60. Arrieta A, Hong JC, Khera R, Virani SS, Krumholz HM, Nasir K (2017) Updated cost-effectiveness assessments of PCSK9 inhibitors from the perspectives of the health system and private payers: insights derived from the FOURIER trial. JAMA Cardiol 2(12):1369. https://doi.org/10.1001/jamacardio.2017.3655

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liang Z, Chen Q, Wei R et al (2021) Cost-effectiveness of alirocumab for the secondary prevention of cardiovascular events after myocardial infarction in the Chinese setting. Front Pharmacol 12((Liang Z.; Zhang X.; Chen X.; Zhao Q., zhaoquanming1@sina.com) Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China). https://doi.org/10.3389/fphar.2021.648244

  62. Kumar R, Tonkin A, Liew D, Zomer E (2018) The cost-effectiveness of PCSK9 inhibitors - the Australian healthcare perspective. Int J Cardiol 267:183–187. https://doi.org/10.1016/j.ijcard.2018.04.122

    Article  PubMed  Google Scholar 

  63. Berkelmans GFN, Greving JP, van der Graaf Y, Visseren FLJ, Dorresteijn JAN (2020) Would treatment decisions about secondary prevention of CVD based on estimated lifetime benefit rather than 10-year risk reduction be cost-effective? Diagn Progn Res 4(1):4. https://doi.org/10.1186/s41512-020-00072-5

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xi X, Wang X, Xie W et al (2021) Cost-effectiveness analysis of evolocumab in patients with recent acute coronary syndrome in China. In Review https://doi.org/10.21203/rs.3.rs-464160/v1

  65. Liang Z, Chen Q, Yang F et al (2020) Cost-effectiveness of evolocumab therapy for myocardial infarction: the Chinese healthcare perspective. Cardiovasc Drugs Ther. 2020 ((Liang Z.; Yan X.; Zhang X.; Chen X.; Zhao Q., zhaoquanming1@sina.com) Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China). https://doi.org/10.1007/s10557-020-07079-6

  66. Kodera S, Morita H, Kiyosue A, Ando J, Takura T, Komuro I (2018) Cost-effectiveness of PCSK9 inhibitor plus statin in patients with triple-vessel coronary artery disease in Japan. Circ J 82(10):2602–2608. https://doi.org/10.1253/circj.CJ-17-1455

    Article  CAS  PubMed  Google Scholar 

  67. Bhatt DL, Briggs AH, Reed SD et al (2020) Cost-effectiveness of alirocumab in patients with acute coronary syndromes. J Am Coll Cardiol 75(18):2297–2308. https://doi.org/10.1016/j.jacc.2020.03.029

    Article  CAS  PubMed  Google Scholar 

  68. Landmesser U, Lindgren P, Hagström E et al (2020) Cost-effectiveness of PCSK9 inhibition with evolocumab in patients with a history of myocardial infarction in Sweden. Eur Heart J Qual Care Clin Outcomes. 2020 ((Landmesser U.) Medical Director Charité Cardiovascular Center (CC11), Campus Benjamin Franklin Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Germany). https://doi.org/10.1093/ehjqcco/qcaa072

  69. Brozek JL, Canelo-Aybar C, Akl EA et al (2021) GRADE guidelines 30: the GRADE approach to assessing the certainty of modeled evidence—an overview in the context of health decision-making. J Clin Epidemiol 129:138–150. https://doi.org/10.1016/j.jclinepi.2020.09.018

    Article  PubMed  Google Scholar 

Download references

Funding

We received no specific funding for this work. However, the Dept. of Health Research Govt. of India funds the Health Technology Assessment resource center ICMR-NIE. Funders had no role in the conceptualization, conduction, and manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

Bagepally BS: conceptualization, data curation, formal analysis, investigation, methodology, software, original draft, review and editing. Akhil Sasidharan: data curation, formal analysis, original draft.

Corresponding author

Correspondence to Bhavani Shankara Bagepally.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1892 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagepally, B.S., Sasidharan, A. Incremental net benefit of lipid-lowering therapy with PCSK9 inhibitors: a systematic review and meta-analysis of cost-utility studies. Eur J Clin Pharmacol 78, 351–363 (2022). https://doi.org/10.1007/s00228-021-03242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-021-03242-6

Keywords

Navigation