Skip to main content
Log in

Novel method to estimate the appropriate dosing interval for activated charcoal to avoid interaction with other drugs

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

A Correction to this article was published on 16 September 2020

This article has been updated

Abstract

Purpose

Activated charcoal is known to adsorb a variety of drugs concomitantly administered and reduce their intestinal absorption, and separating the dosing is considered a practical approach to avoid this drug interaction. The aim of the present study was to develop and validate a simple method to estimate the sufficient dosing interval to avoid drug interaction using the pharmacokinetic profile of the subject drugs administered alone and the amplitude of interaction upon simultaneous administration with activated charcoal.

Methods

For each subject drug, the pharmacokinetic profile and the amplitude of interaction, as assessed by AUCR (the ratio of area under the plasma concentration-time curve (AUC) in the presence of activated charcoal to that in its absence), were collected from previous reports. The AUCR value was estimated based on the compartment model under the assumption that the subject drug in the first gastrointestinal compartment is immediately adsorbed to a certain extent upon the administration of activated charcoal. The estimated AUCR (AUCRe) for each drug with certain dosing interval was compared with the respective AUCR value reported previously (AUCRobs).

Results

Among twenty concentration profiles for 14 subject drugs obtained from previous reports, 15 AUCRe values fell in the range of 80–120% of the respective AUCRobs values.

Conclusion

The developed method enabled estimation of the amplitude of DDI by activated charcoal administered in a certain dosing interval, whereas overestimation of AUCRe was observed for drugs that undergo extensive enterohepatic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this study as no datasets were generated during current study. All data analyzed during this study are included in this published (the reference) articles.

Change history

  • 16 September 2020

    Figure 3 image was inadvertently removed from the original article. The original article has been corrected.

Abbreviations

AIC:

Akaike’s information criterion

AUC:

Area under the plasma concentration-time curve

AUCR:

AUC ratio (the ratio of AUC in the presence of activated charcoal to that in the absence of activated charcoal)

AUCRobs :

Observed AUCR

AUCRe :

Estimated AUCR

D:

Dose

DDI:

Drug-drug interaction

k12 :

Rate constant from central compartment to peripheral compartment

k21 :

Rate constant from peripheral compartment to central compartment

ke :

Elimination rate constant

kG1 :

Transfer rate constant from GI1 compartment

kG2 :

Transfer rate constant from GI2 compartment to systemic compartment

tlag :

Lag time

tmax :

Time to reach maximum plasma concentration

Vd :

Volume of distribution

References

  1. Welling PG (1984) Interactions affecting drug absorption. Clin Pharmacokinet 9(5):404–434. https://doi.org/10.2165/00003088-198409050-00002

    Article  CAS  PubMed  Google Scholar 

  2. Miyata K, Ohtani H, Tsujimoto M, Sawada Y (2007) Antacid interaction with new quinolones: dose regimen recommendations based on pharmacokinetic modeling of clinical data for ciprofloxacin, gatifloxacin and norfloxacin and metal cations. Int J Clin Pharmacol Ther 45(1):63–70. https://doi.org/10.5414/cpp45063

    Article  CAS  PubMed  Google Scholar 

  3. Asai M, Kumakura S, Kikuchi (2019) Review of the efficacy of AST-120 (KREMEZIN®) on renal function in chronic kidney disease patients. Ren Fail 41:47–56. https://doi.org/10.1080/0886022X.2018.1561376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niwa T, Ise M (1994) Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med 124:96–104

    CAS  PubMed  Google Scholar 

  5. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, Vanholder R, Massy ZA, European Uremic Toxin Work Group (EUTox) (2009) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4:1551–1558. https://doi.org/10.2215/CJN.03980609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schulman G, Agarwal R, Acharya M, Berl T, Blumenthal S, Kopyt N (2006) A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am J Kidney Dis 47:565–577. https://doi.org/10.1053/j.ajkd.2005.12.036

    Article  CAS  PubMed  Google Scholar 

  7. Sanaka T (2009) The points to note in carbonaceous adsorptive agent. Kidney Dial 67:450–456 [Japanese]

    Google Scholar 

  8. Koshikawa S, Koide K, Yamane (1992) The effect of AST-120 on delaying initiation of dialysis therapy in end-stage renal disease. Kidney Dial 32:783–794 [Japanese]

    Google Scholar 

  9. Schulman G, Berl T, Beck GJ, Remuzzi G, Ritz E, Arita K, Kato A, Shimizu M (2015) Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J Am Soc Nephrol 26:1732–1746. https://doi.org/10.1681/ASN.2014010042

    Article  CAS  PubMed  Google Scholar 

  10. Schulman G, Berl T, Beck GJ, Remuzzi G, Ritz E, Shimizu M, Kikuchi M, Shobu Y (2018) Risk factors for progression of chronic kidney disease in the EPPIC trials and the effect of AST-120. Clin Exp Nephrol 22:299–308. https://doi.org/10.1007/s10157-017-1447-0

    Article  CAS  PubMed  Google Scholar 

  11. Olson KR (2010) Activated charcoal for acute poisoning: one toxicologist’s journey. J Med Toxicol 6(2):190–198. https://doi.org/10.1007/s13181-010-0046-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Laine K, Kivistö KT, Laakso I, Neuvonen PJ (1997) Prevention of amlodipine absorption by activated charcoal: effect of delay in charcoal administration. Br J Clin Pharmacol 43(1):29–33. https://doi.org/10.1111/j.1365-2125.1997.tb00029.x

    Article  CAS  PubMed  Google Scholar 

  13. Yamaoka K, Tanigawara Y, Nakagawa T, Uno T (1981) A pharmacokinetics analysis program (multi) for microcomputer. Aust J Pharm 4(11):879–885. https://doi.org/10.1248/bpb1978.4.879

    Article  CAS  Google Scholar 

  14. Locatelli I, Mrhar A, Bogataj M (2009) Gastric emptying of pellets under fasting conditions: a mathematical model. Pharm Res 26(7):1607–1617. https://doi.org/10.1007/s11095-009-9869-3

    Article  CAS  PubMed  Google Scholar 

  15. Yeates PJ, Thomas SH (2000) Effectiveness of delayed activated charcoal administration in simulated paracetamol (acetaminophen) overdose. Br J Clin Pharmacol 49(1):11–14. https://doi.org/10.1046/j.1365-2125.2000.00107.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christophersen AB, Levin D, Hoegberg LC, Angelo HR, Kampmann JP (2002) Activated charcoal alone or after gastric lavage: a simulated large paracetamol intoxication. Br J Clin Pharmacol 53(3):312–317. https://doi.org/10.1046/j.0306-5251.2001.01568.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kivistö KT, Neuvonen PJ (1991) Effect of activated charcoal on the absorption of amiodarone. Hum Exp Toxicol 10(5):327–329. https://doi.org/10.1177/096032719101000505

    Article  PubMed  Google Scholar 

  18. Meng X, Mojaverian P, Doedée M, Lin E, Weinryb I, Chiang ST, Kowey PR (2001) Bioavailability of amiodarone tablets administered with and without food in healthy subjects. Am J Cardiol 87(4):432–435. https://doi.org/10.1016/s0002-9149(00)01396-5

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Jia J, Liu G, Li S, Lu C, Liu Y, Yu C (2009) Pharmacokinetics and bioequivalence evaluation of two formulations of 10-mg amlodipine besylate: an open-label, single-dose, randomized, two-way crossover study in healthy Chinese male volunteers. Clin Ther 31(4):777–783. https://doi.org/10.1016/j.clinthera.2009.04.013

    Article  CAS  Google Scholar 

  20. Wang X, Mondal S, Wang J, Tirucherai G, Zhang D, Boyd RA, Frost C (2014) Effect of activated charcoal on apixaban pharmacokinetics in healthy subjects. Am J Cardiovasc Drugs 14(2):147–154. https://doi.org/10.1007/s40256-013-0055-y

    Article  CAS  PubMed  Google Scholar 

  21. Neuvonen PJ, Elonen E (1980) Effect of activated charcoal on absorption and elimination of phenobarbitone, carbamazepine and phenylbutazone in man. Eur J Clin Pharmacol 17(1):51–57. https://doi.org/10.1007/BF00561677

    Article  CAS  PubMed  Google Scholar 

  22. Tothfalusl L, Speidl S, Endrenyi L (2007) Exposure-response analysis reveals that clinically important toxicity difference can exist between bioequivalent carbamazepine tablets. Br J Clin Pharmacol 65(1):110–122. https://doi.org/10.1111/j.1365-2125.2007.02984.x

    Article  Google Scholar 

  23. Neuvonen PJ, Elfving SM, Elonen E (1978) Reduction of absorption of digoxin, phenytoin and aspirin by activated charcoal in man. Eur J Clin Pharmacol 13(3):213–218. https://doi.org/10.1007/BF00609985

    Article  CAS  PubMed  Google Scholar 

  24. Ragueneau I, Poirier JM, Radembino N, Sao AB, Funck-Brentano C, Jaillon P (1999) Pharmacokinetic and pharmacodynamic drug interactions between digoxin and macrogol 4000, a laxative polymer, in healthy volunteers. Br J Clin Pharmacol 48(3):453–456. https://doi.org/10.1046/j.1365-2125.1999.00025.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lapatto-Reiniluoto O, Kivistö KT, Neuvonen PJ (1999) Effect of activated charcoal alone or given after gastric lavage in reducing the absorption of diazepam, ibuprofen and citalopram. Br J Clin Pharmacol 48(2):148–153. https://doi.org/10.1046/j.1365-2125.1999.00995.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dewland PM, Reader S, Berry P (2009) Bioavailability of ibuprofen following oral administration of standard ibuprofen, sodium ibuprofen or ibuprofen acid incorporating poloxamer in healthy volunteers. BMC Clin Pharmacol 9:19. https://doi.org/10.1186/1472-6904-9-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keränen T, Sorri A, Moilanen E, Ylitalo P (2010) Effects of charcoal on the absorption and elimination of the antiepileptic drugs lamotrigine and oxcarbazepine. Arzneimittelforschung. 60(7):421–426. https://doi.org/10.1055/s-0031-1296306

    Article  PubMed  Google Scholar 

  28. Sharma C, Dubey R, Kumar H, Saha N (2005) Food reduces the bioavailability of lamotrigine. Indian J Med Res 121(5):659–664

    CAS  PubMed  Google Scholar 

  29. Dalmora SL, Sangoi MS, Nogueira DR, D’Avila FB, Moreno RA, Sverdloff CE, Oliveira RA, Borges NC (2010) Determination of phenobarbital in human plasma by a specific liquid chromatography method: application to a bioequivalence study. Quim Nova 33(1):124–129. https://doi.org/10.1590/S0100-40422010000100023

    Article  CAS  Google Scholar 

  30. Laine K, Kivistö KT, Ojala-Karlsson P, Neuvonen PJ (1997) Effect of activated charcoal on the pharmacokinetics of pholcodine, with special reference to delayed charcoal ingestion. Ther Drug Monit 19(1):46–50

    Article  CAS  PubMed  Google Scholar 

  31. Lapatto-Reiniluoto O, Kivistö KT, Neuvonen PJ (2000) Gastric decontamination performed 5 min after the ingestion of temazepam, verapamil and moclobemide: charcoal is superior to lavage. Br J Clin Pharmacol 49(3):274–278. https://doi.org/10.1046/j.1365-2125.2000.00138.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lapatto-Reiniluoto O, Kivistö KT, Neuvonen PJ (2000) Efficacy of activated charcoal versus gastric lavage half an hour after ingestion of moclobemide, temazepam, and verapamil. Eur J Clin Pharmacol 56(4):285–288. https://doi.org/10.1007/s002280000139

    Article  CAS  PubMed  Google Scholar 

  33. Hanff LM, Rutten WJ (1996) Pharmacokinetic aspects of rectal formulations of temazepam. Pharm World Scl 18(3):114–119. https://doi.org/10.1007/BF00417760

    Article  CAS  Google Scholar 

  34. Neuvonen PJ, Vartiainen M, Tokola O (1983) Comparison of activated charcoal and ipecac syrup in prevention of drug absorption. Eur J Clin Pharmacol 24(4):557–562. https://doi.org/10.1007/BF00609903

    Article  CAS  PubMed  Google Scholar 

  35. Potgieter MA, Pretorius SG, Jacobs YL, Venter C, Venter JL, Geisser P (2007) Effect of an oral iron(III)-hydroxide polymaltose complex on tetracycline pharmacokinetics in patients with iron deficiency anemia. Arzneimittelforschung. 57(6a):385–391. https://doi.org/10.1055/s-0031-1296687

    Article  CAS  PubMed  Google Scholar 

  36. John DN, Fort S, Lewis MJ, Luscombe DK (1992) Pharmacokinetics and pharmacodynamics of verapamil following sublingual and oral administration to healthy volunteers. Br J Clin Pharmacol 33(16):623–627. https://doi.org/10.1111/j.1365-2125.1992.tb04091.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berg MJ, Berlinger WG, Goldberg MJ, Spector R, Johnson GF (1982) Acceleration of the body clearance of phenobarbital by oral activated charcoal. N Engl J Med 307(11):642–644. https://doi.org/10.1056/NEJM198209093071102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived of designed study: Ohtani, Imaoka, and Akiyoshi

Performed research/analyzed data: Ohtani, Nakamura, Imaoka, and Akiyoshi

Wrote the paper: Ohtani, Nakamura, Imaoka, and Akiyoshi

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hisakazu Ohtani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article was revised: Figure 3 image was inadvertently removed from the original article.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtani, H., Nakamura, K., Imaoka, A. et al. Novel method to estimate the appropriate dosing interval for activated charcoal to avoid interaction with other drugs. Eur J Clin Pharmacol 76, 1529–1536 (2020). https://doi.org/10.1007/s00228-020-02931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-020-02931-y

Keywords

Navigation