Skip to main content
Log in

Effects of CYP2C19 and CYP3A5 genetic polymorphisms on the pharmacokinetics of cilostazol and its active metabolites

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

CYP3A4, CYP2C19, and CYP3A5 are primarily involved in the metabolism of cilostazol. We investigated the effects of CYP2C19 and CYP3A5 genetic polymorphisms on the pharmacokinetics of cilostazol and its two active metabolites.

Methods

Thirty-three healthy Korean volunteers were administered a single 100-mg oral dose of cilostazol. The concentrations of cilostazol and its active metabolites (OPC-13015 and OPC-13213) in the plasma were determined by HPLC-MS/MS.

Results

Although the pharmacokinetic parameters for cilostazol were similar in different CYP2C19 and CYP3A5 genotypes, CYP2C19PM subjects showed significantly higher AUC0-∞ for OPC-13015 and lower for OPC-13213 compared to those in CYP2C19EM subjects (P < 0.01 and P < 0.001, respectively). Pharmacokinetic differences in OPC-13015 between CYP3A5 non-expressors and expressors were significant only within CYP2C19PM subjects. The amount of cilostazol potency-adjusted total active moiety was the greatest in subjects with CYP2C19PM-CYP3A5 non-expressor genotype.

Conclusion

These results suggest that CYP2C19 and CYP3A5 genetic polymorphisms affect the plasma exposure of cilostazol total active moiety. CYP2C19 plays a crucial role in the biotransformation of cilostazol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kimura Y, Tani T, Kanbe T et al (1985) Effect of cilostazol on platelet aggregation and experimental thrombosis. Arzneimittelforschung 35:1144–1149

    CAS  PubMed  Google Scholar 

  2. Uchikawa T, Murakami T, Furukawa H (1992) Effects of the anti-platelet agent cilostazol on peripheral vascular disease in patients with diabetes mellitus. Arzneimittelforschung 42:322–324

    CAS  PubMed  Google Scholar 

  3. Dawson DL, Cutler BS, Meissner MH et al (1998) Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. Circulation 98:678–686

    Article  CAS  Google Scholar 

  4. Pletal [label]. Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan, 2007 < http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/020863s021lbl.pdf>

  5. Bramer SL, Forbes WP (1999) Effect of hepatic impairment on the pharmacokinetics of a single dose of cilostazol. Clin Pharmacokinet 37:25–32

    Article  CAS  Google Scholar 

  6. Ishida S, Morii M, Ueno K et al (2000) Studies on factor affecting pharmacokinetics of cilostazol and pharmacokinetics-pharmacodynamics analysis based platelet aggregation. Jpn J Hosp Pharm 26:264–272

    Article  Google Scholar 

  7. Suri A, Bramer SL (1999) Effect of omeprazole on the metabolism of cilostazol. Clin Pharmacokinet 37:53–59

    Article  CAS  Google Scholar 

  8. Okuda Y, Kimura Y, Yamashita K (1993) Cilostazol. Cardiovasc Drug Rev 11:451–465

    Article  CAS  Google Scholar 

  9. Akiyama H, Kudo S, Shimizu T (1985) The metabolism of a new antithrombotic and vasodilating agent, cilostazol, in rat, dog and man. Arzneimittelforschung 35:1133–1140

    CAS  PubMed  Google Scholar 

  10. Abbas R, Chow CP, Browder NJ et al (2000) In vitro metabolism and interaction of cilostazol with human hepatic cytochrome P450 isoforms. Hum Exp Toxicol 19:178–184

    Article  CAS  Google Scholar 

  11. Hiratsuka M, Hinai Y, Sasaki T et al (2007) Characterization of human cytochrome p450 enzymes involved in the metabolism of cilostazol. Drug Metab Dispos 35:1730–1732

    Article  CAS  Google Scholar 

  12. Yoo HD, Park SA, Cho HY et al (2009) Influence of CYP3A and CYP2C19 genetic polymorphisms on the pharmacokinetics of cilostazol in healthy subjects. Clin Pharmacol Ther 86:281–284

    Article  CAS  Google Scholar 

  13. Yoo HD, Cho HY, Lee YB (2010) Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1. Br J Clin Pharmacol 69:27–37

    Article  CAS  Google Scholar 

  14. Kim HS, Lim Y, Oh M et al (2016) The pharmacokinetic and pharmacodynamic interaction of clopidogrel and cilostazol in relation to CYP2C19 and CYP3A5 genotypes. Br J Clin Pharmacol 81:301–312

    Article  CAS  Google Scholar 

  15. Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41:89–295

    Article  CAS  Google Scholar 

  16. de Morais SM, Wilkinson GR, Blaisdell J et al (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  17. de Morais SM, Wilkinson GR, Blaisdell J et al (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598

    PubMed  Google Scholar 

  18. Sim SC, Risinger C, Dahl ML et al (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113

    Article  CAS  Google Scholar 

  19. Li-Wan-Po A, Girard T, Farndon P et al (2010) Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol 69:222–230

    Article  CAS  Google Scholar 

  20. Desta Z, Zhao X, Shin JG et al (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41:913–958

    Article  CAS  Google Scholar 

  21. Bertilsson L (1995) Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 29:192–209

    Article  CAS  Google Scholar 

  22. Zhang YA, Reviriego J, Lou YQ et al (1990) Diazepam metabolism in native Chinese poor and extensive hydroxylators of S-mephenytoin: interethnic differences in comparison with white subjects. Clin Pharmacol Ther 48:496–502

    Article  CAS  Google Scholar 

  23. van Schaik RH, van der Heiden IP, van den Anker JN et al (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48:1668–1671

    PubMed  Google Scholar 

  24. Yu KS, Cho JY, Jang IJ et al (2004) Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin Pharmacol Ther 76:104–112

    Article  CAS  Google Scholar 

  25. Hu YF, He J, Chen GL et al (2005) CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin Chim Acta 353:187–192

    Article  CAS  Google Scholar 

  26. Kuehl P, Zhang J, Lin Y et al (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27:383–391

    Article  CAS  Google Scholar 

  27. Lee SJ, Usmani KA, Chanas B et al (2003) Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 13:461–472

    Article  CAS  Google Scholar 

  28. Givens RC, Lin YS, Dowling AL et al (2003) CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 95:1297–1300

    Article  CAS  Google Scholar 

  29. Dai Y, Hebert MF, Isoherranen N et al (2006) Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 34:836–847

    Article  CAS  Google Scholar 

  30. Zheng H, Webber S, Zeevi A et al (2003) Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 3:477–483

    Article  CAS  Google Scholar 

  31. Wong M, Balleine RL, Collins M et al (2004) CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin Pharmacol Ther 75:529–538

    Article  CAS  Google Scholar 

  32. Park JY, Kim KA, Park PW et al (2006) Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin Pharmacol Ther 79:590–599

    Article  CAS  Google Scholar 

  33. Ferraresso M, Tirelli A, Ghio L et al (2007) Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant 11:296–300

    Article  CAS  Google Scholar 

  34. Lamba JK, Lin YS, Thummel K et al (2002) Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 12:121–132

    Article  CAS  Google Scholar 

  35. Fukushima-Uesaka H, Saito Y, Watanabe H et al (2004) Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 23:100. https://doi.org/10.1002/humu.9210

    Article  PubMed  Google Scholar 

  36. Yamamoto T, Nagafuchi N, Ozeki T et al (2003) CYP3A4*18: it is not rare allele in Japanese population. Drug Metab Pharmacokinet 18:267–268

    Article  CAS  Google Scholar 

  37. Hu YF, He J, Chen GL et al (2005) CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin Chim Acta 353:187–192

    Article  CAS  Google Scholar 

  38. Du J, Xing Q, Xu L et al (2006) Systematic screening for polymorphisms in the CYP3A4 gene in the Chinese population. Pharmacogenomics 7:831–841

    Article  CAS  Google Scholar 

  39. Lee SJ, Lee SS, Jeong HE et al (2007) The CYP3A4*18 allele, the most frequent coding variant in Asian populations, does not significantly affect the midazolam disposition in heterozygous individuals. Drug Metab Dispos 35:2095–2101

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2016R1A2B4007381).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Woo Bae, Yun Jeong Lee or Seok-Yong Lee.

Ethics declarations

All subjects provided verbal and written informed consent. This study was performed in accordance with the guidelines of the Declaration of Helsinki and was approved by the Institutional Ethics Committee of Sungkyunkwan University, Suwon, Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PPTX 5696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HI., Byeon, JY., Kim, YH. et al. Effects of CYP2C19 and CYP3A5 genetic polymorphisms on the pharmacokinetics of cilostazol and its active metabolites. Eur J Clin Pharmacol 74, 1417–1426 (2018). https://doi.org/10.1007/s00228-018-2522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2522-5

Keywords

Navigation