Skip to main content
Log in

A pharmacokinetic drug–drug interaction study between selexipag and midazolam, a CYP3A4 substrate, in healthy male subjects

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

In vitro data showed that selexipag and its active metabolite (ACT-333679) have an inductive effect on CYP3A4, CYP2B6, and CYP2C9 at concentrations approximately 100-fold higher than the maximum plasma concentration (C max) measured under steady-state conditions. In order to confirm in vivo the lack of induction at the enterocyte level, we assessed the effect of selexipag on midazolam, a substrate of hepatic and intestinal CYP3A4.

Methods

This study was conducted according to an open-label, randomized, two-way crossover design. A total of 20 subjects received a single oral dose of 7.5 mg midazolam alone (treatment A) or on top of steady-state selexipag (treatment B). Selexipag was administered twice daily using an up-titration scheme consisting of three steps: 400, 600, 1000, and 1600 μg with increments every fourth day. A 24-h pharmacokinetic profile was performed following midazolam administration, and bioequivalence criteria were investigated on an exploratory basis.

Results

The C max of midazolam and 1-hydroxymidazolam was decreased by approximately 20 and 14%, respectively, following treatment B compared to A. The time to reach C max for midazolam and 1-hydroxymidazolam was similar between treatments. The terminal half-life was reduced in treatment B compared to A for both midazolam (16%) and 1-hydroxymidazolam (20%). Exposure (area under the curve) to midazolam and 1-hydroxymidazolam was similar between treatments, and the 90% confidence intervals of geometric mean ratios were within the bioequivalence interval. Treatment with midazolam, selexipag, and the combination was safe and well tolerated.

Conclusion

Exposure to midazolam and 1-hydroxymidazolam was not affected by treatment with selexipag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Actelion Pharmaceuticals US Inc. US prescribing information: Uptravi (selexipag) tablets, for oral use (2015). vol Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207947s000lbl.pdf.

  2. Scott LJ (2016) Selexipag: first global approval. Drugs 76(3):413–418. doi:10.1007/s40265-016-0549-4

    Article  CAS  PubMed  Google Scholar 

  3. Sitbon O, Channick R, Chin KM, Frey A, Gaine S, Galie N, Ghofrani HA, Hoeper MM, Lang IM, Preiss R, Rubin LJ, Di Scala L, Tapson V, Adzerikho I, Liu J, Moiseeva O, Zeng X, Simonneau G, McLaughlin VV, Investigators G (2015) Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med 373(26):2522–2533. doi:10.1056/NEJMoa1503184

    Article  CAS  PubMed  Google Scholar 

  4. Actelion Pharmaceuticals Ltd. Uptravi: EU summary of product characteristics. (2016). http://www.ema.europa.eu. Accessed 8 Nov 2016

  5. Kaufmann P, Niglis S, Bruderer S, Segrestaa J, Aanismaa P, Halabi A, Dingemanse J (2015) Effect of lopinavir/ritonavir on the pharmacokinetics of selexipag an oral prostacyclin receptor agonist and its active metabolite in healthy subjects. Br J Clin Pharmacol 80(4):670–677. doi:10.1111/bcp.12650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duggan ST, Keam SJ, Burness CB (2017) Selexipag: a review in pulmonary arterial hypertension. Am J Cardiovasc Drugs 17(1):73–80. doi:10.1007/s40256-016-0209-9

    Article  CAS  PubMed  Google Scholar 

  7. Bruderer S, Hurst N, Kaufmann P, Dingemanse J (2014) Multiple-dose up-titration study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of selexipag, an orally available selective prostacyclin receptor agonist, in healthy subjects. Pharmacology 94(3–4):148–156. doi:10.1159/000367630

    Article  CAS  PubMed  Google Scholar 

  8. Kaufmann P, Okubo K, Bruderer S, Mant T, Yamada T, Dingemanse J, Mukai H (2015) Pharmacokinetics and tolerability of the novel oral prostacyclin IP receptor agonist selexipag. Am J Cardiovasc Drugs 15(3):195–203. doi:10.1007/s40256-015-0117-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaufmann P, Hurst N, Astruc B, Dingemanse J (2017) Absolute oral bioavailability of selexipag, a novel oral prostacyclin IP receptor agonist. Eur J Clin Pharmacol 73(2):151–156. doi:10.1007/s00228-016-2164-4

    Article  CAS  PubMed  Google Scholar 

  10. EMA (2016) European public assessment report (EPAR): Uptravi (selexipag). http://www.ema.europa.eu. Accessed 31 Oct 2016.

  11. Kaufmann P, Cruz HG, Krause A, Ulc I, Halabi A, Dingemanse J (2016) Pharmacokinetics of the novel oral prostacyclin receptor agonist selexipag in subjects with hepatic or renal impairment. Br J Clin Pharmacol 82(2):369–379. doi:10.1111/bcp.12963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bruderer S, Okubo K, Mukai H, Mant T, Dingemanse J (2016) Investigation of potential pharmacodynamic and pharmacokinetic interactions between selexipag and warfarin in healthy male subjects. Clin Ther 38(5):1228–1236 e1221. doi:10.1016/j.clinthera.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  13. EMA (2016) EMA/272184/2016. Committee for Medicinal Products for Human Use (CHMP). Assessment report: Uptravi. Procedure No. EMEA/H/C/003774/0000. Accessible http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/003774/WC500207175.pdf

  14. Hedrich WD, Hassan HE, Wang H (2016) Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 6(5):413–425. doi:10.1016/j.apsb.2016.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  15. Groer C, Busch D, Patrzyk M, Beyer K, Busemann A, Heidecke CD, Drozdzik M, Siegmund W, Oswald S (2014) Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics. J Pharm Biomed Anal 100:393–401. doi:10.1016/j.jpba.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  16. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC (2006) The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 34(5):880–886. doi:10.1124/dmd.105.008672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gorski JC, Hall SD, Jones DR, VandenBranden M, Wrighton SA (1994) Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 47(9):1643–1653

    Article  CAS  PubMed  Google Scholar 

  18. Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, Barr DM, Gillies BS, Thummel KE (1996) First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 60(1):14–24. doi:10.1016/S0009-9236(96)90162-9

    Article  CAS  PubMed  Google Scholar 

  19. Zhu B, Bush D, Doss GA, Vincent S, Franklin RB, Xu S (2008) Characterization of 1′-hydroxymidazolam glucuronidation in human liver microsomes. Drug Metab Dispos 36(2):331–338. doi:10.1124/dmd.107.017962

    Article  CAS  PubMed  Google Scholar 

  20. EMA (2012) Committee for Human Medicinal Products. Guideline on the investigation of drug interactions. (CPMP/EWP/560/95/Rev. 1 Corr. 2). Accessible: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  21. Reves JG, Fragen RJ, Vinik HR, Greenblatt DJ (1985) Midazolam: pharmacology and uses. Anesthesiology 62(3):310–324

    Article  CAS  PubMed  Google Scholar 

  22. Bornemann LD, Crews T, Chen SS, Twardak S, Patel IH (1986) Influence of food on midazolam absorption. J Clin Pharmacol 26(1):55–59

    Article  CAS  PubMed  Google Scholar 

  23. Bruderer S, Hurst N, Remenova T, Dingemanse J (2017) Clinical pharmacology, efficacy, and safety of selexipag for the treatment of pulmonary arterial hypertension. Expert Opin Drug Saf 16(6):743–751. doi:10.1080/14740338.2017.1328052

    Article  CAS  PubMed  Google Scholar 

  24. Hoch M, Hoever P, Alessi F, Theodor R, Dingemanse J (2013) Pharmacokinetic interactions of almorexant with midazolam and simvastatin, two CYP3A4 model substrates, in healthy male subjects. Eur J Clin Pharmacol 69(3):523–532. doi:10.1007/s00228-012-1403-6

    Article  CAS  PubMed  Google Scholar 

  25. Gibaldi M, Perrier D (1982) Pharmacokinetics. Marcel Dekker, New York

    Google Scholar 

  26. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352(21):2211–2221. doi:10.1056/NEJMra032424

    Article  CAS  PubMed  Google Scholar 

  27. Karlgren M, Bergström CAS (2015) How physicochemical properties of drugs affect their metabolism and clearance. In: Wilson AGE (ed) New Horizons in Predictive Drug Metabolism and Pharmacokinetics vol 49. RSC Drug Discovery Series

  28. Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE, Altman RB (2010) Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics 20(4):277–281. doi:10.1097/FPC.0b013e3283349e84

    PubMed  PubMed Central  Google Scholar 

  29. Sahi J, Shord SS, Lindley C, Ferguson S, LeCluyse EL (2009) Regulation of cytochrome P450 2C9 expression in primary cultures of human hepatocytes. J Biochem Mol Toxicol 23(1):43–58. doi:10.1002/jbt.20264

    Article  CAS  PubMed  Google Scholar 

  30. Hoch M, Darpo B, Remenova T, Stoltz R, Zhou M, Kaufmann P, Bruderer S, Dingemanse J (2015) A thorough QT study in the context of an uptitration regimen with selexipag, a selective oral prostacyclin receptor agonist. Drug Des Devel Ther 9:175–185. doi:10.2147/DDDT.S75565

    PubMed  Google Scholar 

  31. Baldoni D, Bruderer S, Muhsen N, Dingemanse J (2015) Bioequivalence of different dose-strength tablets of selexipag, a selective prostacyclin receptor agonist, in a multiple-dose up-titration study. Int J Clin Pharmacol Ther 53(9):788–798. doi:10.5414/CP202318

    Article  CAS  PubMed  Google Scholar 

  32. Baneyx G, Parrott N, Meille C, Iliadis A, Lave T (2014) Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: influence of time between substrate and inducer administration. Eur J Pharm Sci 56:1–15. doi:10.1016/j.ejps.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  33. Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J (2013) Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J 15(3):629–645. doi:10.1208/s12248-013-9470-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heizmann P, Eckert M, Ziegler WH (1983) Pharmacokinetics and bioavailability of midazolam in man. Br J Clin Pharmacol 16(Suppl 1):43S–49S

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was sponsored by Actelion Pharmaceuticals Ltd., Allschwil, Switzerland. The authors thank Radka Štěpánová (Aprova s.r.o., Brno, Czech Republic) for statistical analysis of clinical data and Susanne Globig (Department of Preclinical Pharmacokinetics and Metabolism, Actelion Pharmaceuticals Ltd) for the bioanalytical conduct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Eric Juif.

Ethics declarations

The French Ethics Committee (Comité de Protection des Personnes, Sud-Est IV, Lyon, France) reviewed and approved the study protocol and any material provided to the study participants. This study was conducted in full compliance with the principles of the Declaration of Helsinki.

Competing interests

All authors have completed the Unified Competing Interest form at http://www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare no support from any third party organization for the submitted work and no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years. PEJ, MB, SB, and JD are full-time employees of Actelion Pharmaceuticals Ltd. PEJ, SB, and JD possess stock options. YD was employed by Eurofins Optimed (France) in the previous 3 years.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juif, PE., Boehler, M., Donazzolo, Y. et al. A pharmacokinetic drug–drug interaction study between selexipag and midazolam, a CYP3A4 substrate, in healthy male subjects. Eur J Clin Pharmacol 73, 1121–1128 (2017). https://doi.org/10.1007/s00228-017-2282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2282-7

Keywords

Navigation