Skip to main content
Log in

Association between N-desethylamiodarone/amiodarone ratio and amiodarone-induced thyroid dysfunction

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We used a retrospective data mining approach to explore the association between serum amiodarone (AMD) and N-desethylamiodarone (DEA) concentrations and thyroid-related hormone levels.

Methods

Laboratory data sets from January 2012 to April 2016 were extracted from the computerized hospital information system database at the National Cerebral and Cardiovascular Center (NCVC). Data sets that contained serum AMD and DEA concentrations and thyroid function tests, including thyroid-stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3), were analyzed.

Results

A total of 1831 clinical laboratory data sets from 330 patients were analyzed. Data sets were classified into five groups (euthyroidism, hyperthyroidism, subclinical hyperthyroidism, hypothyroidism, and subclinical hypothyroidism) based on the definition of thyroid function in our hospital. Most abnormal levels of thyroid hormones were observed within the therapeutic range of serum AMD and DEA concentrations. The mean DEA/AMD ratio in the hyperthyroidism group was significantly higher than that in the euthyroidism group (0.95 ± 0.42 vs. 0.87 ± 0.28, p = 0.0209), and the mean DEA/AMD ratio in the hypothyroidism group was significantly lower than that in the euthyroidism group (0.77 ± 0.26 vs. 0.87 ± 0.28, p = 0.0038). The suppressed TSH group (0.98 ± 0.41 vs. 0.87 ± 0.28, p < 0.001) and the elevated FT4 level group (0.90 ± 0.33 vs. 0.84 ± 0.27, p = 0.0037) showed significantly higher DEA/AMD ratios compared with normal level groups. The elevated TSH group showed a significantly lower DEA/AMD ratio compared with the normal group (0.81 ± 0.25 vs. 0.87 ± 0.28, p < 0.0001).

Conclusions

High and low DEA/AMD ratios were associated with AMD-induced hyperthyroidism and hypothyroidism, respectively. The DEA/AMD ratio may be a predictive marker for AMD-induced thyroid dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vorperian VR, Havighurst TC, Miller S, January CT (1997) Adverse effects of low dose amiodarone: a meta-analysis. J Am Coll Cardiol 30(3):791–798

    Article  CAS  PubMed  Google Scholar 

  2. Martino E, Bartalena L, Bogazzi F, Braverman LE (2001) The effects of amiodarone on the thyroid. Endocr Rev 22(2):240–254. doi:10.1210/edrv.22.2.0427

    CAS  PubMed  Google Scholar 

  3. Sidhu J, Jenkins D (2003) Men are at increased risk of amiodarone-associated thyrotoxicosis in the UK. QJM : monthly journal of the Association of Physicians 96(12):949–950

    Article  CAS  PubMed  Google Scholar 

  4. Schaan BD, Cunha CP, Francisconi A, Zottis B, Brum G, Bruch RS, Gus M (2005) Amiodarone-induced thyroid dysfunction in a tertiary center in South Brazil. Arquivos brasileiros de endocrinologia e metabologia 49(6):916–922. doi:10.1590/S0004-27302005000600010

    Article  PubMed  Google Scholar 

  5. Lee KF, Lee KM, Fung TT (2010) Amiodarone-induced thyroid dysfunction in the Hong Kong Chinese population. Hong Kong medical journal = Xianggang yi xue za zhi / Hong Kong Academy of Medicine 16(6):434–439

    CAS  Google Scholar 

  6. Ahmed S, Van Gelder IC, Wiesfeld AC, Van Veldhuisen DJ, Links TP (2011) Determinants and outcome of amiodarone-associated thyroid dysfunction. Clin Endocrinol 75(3):388–394. doi:10.1111/j.1365-2265.2011.04087.x

    Article  CAS  Google Scholar 

  7. Stan MN, Ammash NM, Warnes CA, Brennan MD, Thapa P, Nannenga MR, Bahn RS (2013) Body mass index and the development of amiodarone-induced thyrotoxicosis in adults with congenital heart disease—a cohort study. Int J Cardiol 167(3):821–826. doi:10.1016/j.ijcard.2012.02.015

    Article  PubMed  Google Scholar 

  8. Zosin I, Balas M (2012) Amiodarone-induced thyroid dysfunction in an iodine-replete area: epidemiological and clinical data. Endokrynologia Polska 63(1):2–9

    PubMed  Google Scholar 

  9. Martino E, Aghini-Lombardi F, Mariotti S, Bartalena L, Lenziardi M, Ceccarelli C, Bambini G, Safran M, Braverman LE, Pinchera A (1987) Amiodarone iodine-induced hypothyroidism: risk factors and follow-up in 28 cases. Clin Endocrinol 26(2):227–237

    Article  CAS  Google Scholar 

  10. Trip MD, Wiersinga W, Plomp TA (1991) Incidence, predictability, and pathogenesis of amiodarone-induced thyrotoxicosis and hypothyroidism. Am J Med 91(5):507–511

    Article  CAS  PubMed  Google Scholar 

  11. Aleksic Z, Aleksic A (2011) Incidence of amiodarone-induced thyroid dysfunction and predictive factors for their occurrence. Med Pregl 64(11–12):533–538

    Article  PubMed  Google Scholar 

  12. Martino E, Aghini-Lombardi F, Bartalena L, Grasso L, Loviselli A, Velluzzi F, Pinchera A, Braverman LE (1994) Enhanced susceptibility to amiodarone-induced hypothyroidism in patients with thyroid autoimmune disease. Arch Intern Med 154(23):2722–2726

    Article  CAS  PubMed  Google Scholar 

  13. Martino E, Safran M, Aghini-Lombardi F, Rajatanavin R, Lenziardi M, Fay M, Pacchiarotti A, Aronin N, Macchia E, Haffajee C et al (1984) Environmental iodine intake and thyroid dysfunction during chronic amiodarone therapy. Ann Intern Med 101(1):28–34

    Article  CAS  PubMed  Google Scholar 

  14. Martino E, Aghini-Lombardi F, Mariotti S, Bartalena L, Braverman L, Pinchera A (1987) Amiodarone: a common source of iodine-induced thyrotoxicosis. Horm Res 26(1–4):158–171

    Article  CAS  PubMed  Google Scholar 

  15. Zava TT, Zava DT (2011) Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res 4:14. doi:10.1186/1756-6614-4-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fabre G, Julian B, Saint-Aubert B, Joyeux H, Berger Y (1993) Evidence for CYP3A-mediated N-deethylation of amiodarone in human liver microsomal fractions. Drug metabolism and disposition: the biological fate of chemicals 21(6):978–985

    CAS  Google Scholar 

  17. Pollak PT, Bouillon T, Shafer SL (2000) Population pharmacokinetics of long-term oral amiodarone therapy. Clin Pharmacol Ther 67(6):642–652. doi:10.1067/mcp.2000.107047

    Article  CAS  PubMed  Google Scholar 

  18. Bolt MW, Racz WJ, Brien JF, Massey TE (2001) Effects of vitamin E on cytotoxicity of amiodarone and N-desethylamiodarone in isolated hamster lung cells. Toxicology 166(3):109–118

    Article  CAS  PubMed  Google Scholar 

  19. Pollak PT (1999) Clinical organ toxicity of antiarrhythmic compounds: ocular and pulmonary manifestations. Am J Cardiol 84(9A):37R–45R

    Article  CAS  PubMed  Google Scholar 

  20. Brien JF, Jimmo S, Brennan FJ, Ford SE, Armstrong PW (1987) Distribution of amiodarone and its metabolite, desethylamiodarone, in human tissues. Can J Physiol Pharmacol 65(3):360–364

    Article  CAS  PubMed  Google Scholar 

  21. Kashima A, Funahashi M, Fukumoto K, Komamura K, Kamakura S, Kitakaze M, Ueno K (2005) Pharmacokinetic characteristics of amiodarone in long-term oral therapy in Japanese population. Biol Pharm Bull 28(10):1934–1938

    Article  CAS  PubMed  Google Scholar 

  22. Lafuente-Lafuente C, Alvarez JC, Leenhardt A, Mouly S, Extramiana F, Caulin C, Funck-Brentano C, Bergmann JF (2009) Amiodarone concentrations in plasma and fat tissue during chronic treatment and related toxicity. Br J Clin Pharmacol 67(5):511–519. doi:10.1111/j.1365-2125.2009.03381.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee S, Farwell AP (2016) Euthyroid sick syndrome. Comprehensive Physiology 6(2):1071–1080. doi:10.1002/cphy.c150017

    Article  PubMed  Google Scholar 

  24. Hayashi T, Hasegawa T, Kanzaki H, Funada A, Amaki M, Takahama H, Ohara T, Sugano Y, Yasuda S, Ogawa H, Anzai T (2016) Subclinical hypothyroidism is an independent predictor of adverse cardiovascular outcomes in patients with acute decompensated heart failure. ESC heart failure 3(3):168–176. doi:10.1002/ehf2.12084

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pingitore A, Landi P, Taddei MC, Ripoli A, L'Abbate A, Iervasi G (2005) Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118(2):132–136. doi:10.1016/j.amjmed.2004.07.052

    Article  CAS  PubMed  Google Scholar 

  26. Frey A, Kroiss M, Berliner D, Seifert M, Allolio B, Guder G, Ertl G, Angermann CE, Stork S, Fassnacht M (2013) Prognostic impact of subclinical thyroid dysfunction in heart failure. Int J Cardiol 168(1):300–305. doi:10.1016/j.ijcard.2012.09.064

    Article  PubMed  Google Scholar 

  27. Lo JC, Chertow GM, Go AS, Hsu CY (2005) Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int 67(3):1047–1052. doi:10.1111/j.1523-1755.2005.00169.x

    Article  PubMed  Google Scholar 

  28. Waldhauser KM, Torok M, Ha HR, Thomet U, Konrad D, Brecht K, Follath F, Krahenbuhl S (2006) Hepatocellular toxicity and pharmacological effect of amiodarone and amiodarone derivatives. J Pharmacol Exp Ther 319(3):1413–1423. doi:10.1124/jpet.106.108993

    Article  CAS  PubMed  Google Scholar 

  29. Kaufmann P, Torok M, Hanni A, Roberts P, Gasser R, Krahenbuhl S (2005) Mechanisms of benzarone and benzbromarone-induced hepatic toxicity. Hepatology (Baltimore, Md) 41(4):925–935. doi:10.1002/hep.20634

    Article  CAS  Google Scholar 

  30. Bolt MW, Card JW, Racz WJ, Brien JF, Massey TE (2001) Disruption of mitochondrial function and cellular ATP levels by amiodarone and N-desethylamiodarone in initiation of amiodarone-induced pulmonary cytotoxicity. J Pharmacol Exp Ther 298(3):1280–1289

    CAS  PubMed  Google Scholar 

  31. Chiovato L, Martino E, Tonacchera M, Santini F, Lapi P, Mammoli C, Braverman LE, Pinchera A (1994) Studies on the in vitro cytotoxic effect of amiodarone. Endocrinology 134(5):2277–2282. doi:10.1210/endo.134.5.8156930

    CAS  PubMed  Google Scholar 

  32. Beddows SA, Page SR, Taylor AH, McNerney R, Whitley GS, Johnstone AP, Nussey SS (1989) Cytotoxic effects of amiodarone and desethylamiodarone on human thyrocytes. Biochem Pharmacol 38(24):4397–4403

    Article  CAS  PubMed  Google Scholar 

  33. Holt DW, Tucker GT, Jackson PR, Storey GC (1983) Amiodarone pharmacokinetics. Am Heart J 106(4 Pt 2):840–847

    Article  CAS  PubMed  Google Scholar 

  34. Hanioka N, Matsumoto K, Saito Y, Narimatsu S (2011) Influence of CYP2C8*13 and CYP2C8*14 alleles on amiodarone N-deethylation. Basic & clinical pharmacology & toxicology 108(5):359–362. doi:10.1111/j.1742-7843.2010.00669.x

    Article  CAS  Google Scholar 

  35. Sato K, Miyakawa M, Eto M, Inaba T, Matsuda N, Shiga T, Ohnishi S, Kasanuki H (1999) Clinical characteristics of amiodarone-induced thyrotoxicosis and hypothyroidism in Japan. Endocr J 46(3):443–451

    Article  CAS  PubMed  Google Scholar 

  36. Thienpont LM, Van Uytfanghe K, Van Houcke S, Das B, Faix JD, MacKenzie F, Quinn FA, Rottmann M, Van den Bruel A (2014) A progress report of the IFCC Committee for Standardization of Thyroid Function Tests. European thyroid journal 3(2):109–116. doi:10.1159/000358270

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Authors’ contributions

Mitsutaka Takada conceived the study and design. Mikie Yamato, Kyoichi Wada, and Akira Oita acquired data. Mikie Yamato, Kyoichi Wada, and Mitsutaka Takada analyzed and interpreted data. Mikie Yamato, Kyoichi Wada, and Mitsutaka Takada drafted the manuscript. Mai Fujimoto, Kouichi Hosomi, and Tomohiro Hayashi revised the manuscript. Mikie Yamato and Mistukata Takada analyzed statistical data. Mistutaka Takada did supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutaka Takada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the Ethics Committees of the NCVC and Kindai University. For this type of study, formal consent is not required.

Additional information

This study was carried out in the Department of Pharmacy, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, Japan.

Electronic supplementary material

ESM 1

(DOCX 221 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamato, M., Wada, K., Fujimoto, M. et al. Association between N-desethylamiodarone/amiodarone ratio and amiodarone-induced thyroid dysfunction. Eur J Clin Pharmacol 73, 289–296 (2017). https://doi.org/10.1007/s00228-017-2195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2195-5

Keywords

Navigation