Skip to main content
Log in

Stereoselective handling of perhexiline: implications regarding accumulation within the human myocardium

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Perhexiline is a prophylactic anti-ischaemic agent with weak calcium antagonist effect which has been increasingly utilised in the management of refractory angina. The metabolic clearance of perhexiline is modulated by CYP2D6 metaboliser status and stereoselectivity. The current study sought to (1) determine whether the acute accumulation of perhexiline in the myocardium is stereoselective and (2) investigate the relationship between duration of short-term therapy and the potential stereoselective effects of perhexiline within myocardium.

Method

Patients (n = 129) from the active arm of a randomised controlled trial of preoperative perhexiline in cardiac surgery were treated with oral perhexiline for a median of 9 days. Correlates of atrial and ventricular concentrations of enantiomers were sought via univariate followed by multivariate analyses.

Results

Myocardial uptake of both (+) and (−) perhexiline was greater in ventricles than in atria, and there was more rapid clearance of (−) than (+) perhexiline. The main determinants of atrial uptake of both (+) and (−) perhexiline were the plasma concentrations [(+) perhexiline: β = −0.256, p = 0.015; (−) perhexiline: β = −0.347, p = 0.001] and patients’ age [(+) perhexiline: β = 0.300, p = 0.004; (−) perhexiline: β = 0.288, p = 0.005]. Atrial uptake of (+) enantiomer also varied directly with duration of therapy (β = 0.228, p = 0.025), while atrial uptake of (−) perhexiline varied inversely with simultaneous heart rate (β = −0.240, p = 0.015).

Conclusion

(1) Uptake of both perhexiline enantiomers into atrium is greater with advanced age and displays evidence of both saturability and minor stereoselectivity. (2) Atrial uptake of (−) perhexiline may selectively modulate heart rate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kennedy JA, Unger SA, Horowitz JD (1996) Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol 52:273–280

    Article  CAS  PubMed  Google Scholar 

  2. Roberts LN, Mason GP (1972) Clinical trial of a new antianginal drug: perhexiline maleate. J Clin Pharmacol New Drugs 12:342–348

    Article  CAS  PubMed  Google Scholar 

  3. Burns-Cox CJ, Chandrasekhar KP, Ikram H, Peirce TH, Pilcher J, Quinlan CD et al (1971) Clinical evaluation of perhexiline maleate in patients with angina pectoris. Br Med J 4:586–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bourrat C, Viala JJ, Guastala JP (1975) Letter: peripheral neuropathy after prolonged adsorption of perhexiline maleate. 2 cases. Nouv Presse Med 4:2528

    CAS  PubMed  Google Scholar 

  5. Fraser DM, Campbell IW, Miller HC (1977) Peripheral and autonomic neuropathy after treatment with perhexiline maleate. Br Med J 2:675–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Le Menn G, Mabin D, Penther P (1977) Slow and incomplete regression of peripheral neuropathy due to perhexiline maleate. Ann Cardiol Angeiol (Paris) 26:149–150

    Google Scholar 

  7. Singlas E, Goujet MA, Simon P (1978) Pharmacokinetics of perhexiline maleate in anginal patients with and without peripheral neuropathy. Eur J Clin Pharmacol 14:195–201

    Article  CAS  PubMed  Google Scholar 

  8. Cooper RG, Evans DA, Whibley EJ (1984) Polymorphic hydroxylation of perhexiline maleate in man. J Med Genet 21:27–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Barclay ML, Sawyers SM, Begg EJ, Zhang M, Roberts RL, Kennedy MA et al (2003) Correlation of CYP2D6 genotype with perhexiline phenotypic metabolizer status. Pharmacogenetics 13:627–632

    Article  CAS  PubMed  Google Scholar 

  10. Cole PL, Beamer AD, McGowan N, Cantillon CO, Benfell K, Kelly RA et al (1990) Efficacy and safety of perhexiline maleate in refractory angina. A double-blind placebo-controlled clinical trial of a novel antianginal agent. Circulation 81:1260–1270

    Article  CAS  PubMed  Google Scholar 

  11. Horowitz JD, Sia ST, Macdonald PS, Goble AJ, Louis WJ (1986) Perhexiline maleate treatment for severe angina pectoris—correlations with pharmacokinetics. Int J Cardiol 13:219–229

    Article  CAS  PubMed  Google Scholar 

  12. Beadle RM, Frenneaux M (2010) Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease. Heart 96:824–830

    Article  CAS  PubMed  Google Scholar 

  13. Sallustio BC, Westley IS, Morris RG (2002) Pharmacokinetics of the antianginal agent perhexiline: relationship between metabolic ratio and steady-state dose. Br J Clin Pharmacol 54:107–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Philpott A, Chandy S, Morris R, Horowitz JD (2004) Development of a regimen for rapid initiation of perhexiline therapy in acute coronary syndromes. Intern Med J 34:361–363

    Article  CAS  PubMed  Google Scholar 

  15. Stewart S, Voss DW, Northey DL, Horowitz JD (1996) Relationship between plasma perhexiline concentration and symptomatic status during short-term perhexiline therapy. Ther Drug Monit 18:635–639

    Article  CAS  PubMed  Google Scholar 

  16. Liberts EA, Willoughby SR, Kennedy JA, Horowitz JD (2007) Effects of perhexiline and nitroglycerin on vascular, neutrophil and platelet function in patients with stable angina pectoris. Eur J Pharmacol 560:49–55

    Article  CAS  PubMed  Google Scholar 

  17. Drury NE, Howell NJ, Calvert MJ, Weber RJ, Senanayake EL, Lewis ME et al (2015) The effect of perhexiline on myocardial protection during coronary artery surgery: a two-centre, randomized, double-blind, placebo-controlled trial. Eur J Cardiothorac Surg 47(3):464–472

    Article  PubMed Central  PubMed  Google Scholar 

  18. Drury NE, Licari G, Chong CR, Howell NJ, Frenneaux MP, Horowitz JD et al (2014) Relationship between plasma, atrial and ventricular perhexiline concentrations in humans: insights into factors affecting myocardial uptake. Br J Clin Pharmacol 77:789–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Davies BJ, Coller JK, James HM, Somogyi AA, Horowitz JD, Sallustio BC (2006) The influence of CYP2D6 genotype on trough plasma perhexiline and cis-OH-perhexiline concentrations following a standard loading regimen in patients with myocardial ischaemia. Br J Clin Pharmacol 61:321–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Davies BJ, Coller JK, Somogyi AA, Milne RW, Sallustio BC (2007) CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes. Drug Metab Dispos 35:128–138

    Article  CAS  PubMed  Google Scholar 

  21. Gould BJ, Amoah AG, Parke DV (1986) Stereoselective pharmacokinetics of perhexiline. Xenobiotica 16:491–502

    Article  CAS  PubMed  Google Scholar 

  22. Licari G, Sallustio BC, Somogyi AA, Milne RW (2014) The enantiomers of the myocardial metabolic agent perhexiline display divergent effects on hepatic energy metabolism and peripheral neural function in rats. Global Heart 9:e272

    Article  Google Scholar 

  23. Davies BJ, Herbert MK, Culbert JA, Pyke SM, Coller JK, Somogyi AA et al (2006) Enantioselective assay for the determination of perhexiline enantiomers in human plasma by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 832:114–120

    Article  CAS  PubMed  Google Scholar 

  24. Legato MJ (1973) Ultrastructure of the atrial, ventricular, and Purkinje cell, with special reference to the genesis of arrhythmias. Circulation 47:178–189

    Article  CAS  PubMed  Google Scholar 

  25. Deschamps D, DeBeco V, Fisch C, Fromenty B, Guillouzo A, Pessayre D (1994) Inhibition by perhexiline of oxidative phosphorylation and the beta-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions. Hepatology 19:948–961

    Article  CAS  PubMed  Google Scholar 

  26. Ling LH, Chik W, Averbuj P, Pati PK, Sverdlov AL, Ngo DT et al (2011) Effects of aging, renal dysfunction, left ventricular systolic impairment, and weight on steady state pharmacokinetics of perhexiline. Ther Drug Monit 33:251–256

    CAS  PubMed  Google Scholar 

  27. Horowitz JD, Powell AC (1986) Myocardial uptake of drugs and clinical effects. Clin Pharmacokinet 11:354–371

    Article  CAS  PubMed  Google Scholar 

  28. Barry WH, Horowitz JD, Smith TW (1985) Comparison of negative inotropic potency, reversibility, and effects on calcium influx of six calcium channel antagonists in cultured myocardial cells. Br J Pharmacol 85:51–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ono H, Kimura M (1981) Effect of Ca2+-antagonistic vasodilators, diltiazem, nifedipine, perhexiline and verapamil, on platelet aggregation in vitro. Arzneimittelforschung 31:1131–1134

    CAS  PubMed  Google Scholar 

  30. Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122:1562–1569

    Article  CAS  PubMed  Google Scholar 

  31. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L et al (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112:3280–3288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a project grant from the British Heart Foundation (PG/06/044/20703). C-RC is a recipient of a National Health and Medical Research Council (NHMRC) of Australia postgraduate scholarship. NED was also funded by a training award from the Wellcome Trust and a research grant from the Queen Elizabeth Hospital Birmingham Charity.

Disclosure

MPF is inventor of the method of use patents for perhexiline in heart muscle diseases. GL and BCS are inventors of patent for use of enantiomers of perhexiline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta C. Sallustio.

Additional information

Cher-Rin Chong and Nigel E. Drury contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, CR., Drury, N.E., Licari, G. et al. Stereoselective handling of perhexiline: implications regarding accumulation within the human myocardium. Eur J Clin Pharmacol 71, 1485–1491 (2015). https://doi.org/10.1007/s00228-015-1934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1934-8

Keywords

Navigation