Skip to main content

Advertisement

Log in

Individual variation and repeatability of Atlantic tarpon Megalops atlanticus migrations in the southern US: implications for conservation and management

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Individual fish movement patterns and behaviors influence population-level traits, and are important for understanding their ecology and evolution. Understanding these behaviors is key for managing and conserving migratory animal populations, including Atlantic tarpon (Megalops atlanticus), that support an economically important recreational fishery. Using acoustic telemetry, we tracked individual movement patterns of M. atlanticus inhabiting the eastern Gulf of Mexico and the southeast coast of the US over successive years. Net-squared displacement models revealed considerable individual-level variation in movement patterns with high individual-level repeatability in the timing of migrations and migratory pathways. Although distinct migratory subgroups existed, M. atlanticus generally migrate northward in the spring and summer to putative foraging grounds and remain in these areas for, on average, four months and then migrate southward in the fall. Subadult M. atlanticus exhibited similar migratory patterns as adults, while large juveniles exhibited either resident or nomadic behaviors. For migratory individuals, fish size did not influence movement patterns. Given that distinct migratory subgroups seasonally mixed in southern Florida for spawning activity, our study indicates that M. atlanticus along the eastern Gulf of Mexico and southeastern coast of the US should be considered a single interconnected stock. With that in mind, using M. atlanticus angler and guide knowledge, we assessed the vulnerability of M. atlanticus to potential threats across their range and along migratory pathways. Collectively, the far-ranging nature of M. atlanticus and their diversity in movement patterns highlights the need for more uniform and cohesive management and conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Datasets generated during and analyzed during this study are not publicly available due to the sensitivity surrounding the Megalops atlanticus fishery. Data are available upon reasonable request.

References

  • Adams AJ, Horodysky AZ, McBride RS, Guindon K, Shenker J, MacDonald TC, Harwell HD, Ward R, Carpenter K (2014) Global conservation status and research needs for tarpons (Megalopidae), ladyfishes (Elopidae) and bonefishes (Albulidae). Fish Fish 15:280–311

    Google Scholar 

  • Adams A, Guindon K, Horodysky A, MacDonald T, McBride R, Shenker J, Ward R (2019) Megalops atlanticus. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T191823A174796143.en

    Article  Google Scholar 

  • Adams A, Danylchuk AJ, Cooke SJ (2023) Conservation connections: incorporating connectivity into management and conservation of flats fishes and their habitats in a multi-stressor world. Environ Biol Fishes 106:117–130. https://doi.org/10.1007/s10641-023-01391-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Allen AM, Singh NJ (2016) Linking movement ecology with wildlife management and conservation. Front Ecol Evol 3:1–13. https://doi.org/10.3389/fevo.2015.00155

    Article  Google Scholar 

  • Alós J, Aarestrup K, Abecasis D, Afonso P, Alonso-Fernandez A, Aspillaga E, Barcelo-Serra M, Bolland J, Cabanellas-Reboredo M, Lennox R (2022) Toward a decade of ocean science for sustainable development through acoustic animal tracking. Glob Change Biol 28:5630–5653

    Google Scholar 

  • Andrews AJ, Di Natale A, Bernal-Casasola D, Aniceti V, Onar V, Oueslati T, Theodropoulou T, Morales-Muñiz A, Cilli E, Tinti F (2022) Exploitation history of Atlantic bluefin tuna in the eastern Atlantic and Mediterranean—insights from ancient bones. ICES J Mar Sci 79:247–262

    Google Scholar 

  • Arthington AH, Dulvy NK, Gladstone W, Winfield IJ (2016) Fish conservation in freshwater and marine realms: status, threats and management. Aquat Conserv Mar Freshwat Ecosyst 26:838–857

    Google Scholar 

  • Birnie-Gauvin K, Koed A, Aarestrup K (2021) Repeatability of migratory behaviour suggests trade-off between size and survival in a wild iteroparous salmonid. Funct Ecol 35(12):2717–2727

    CAS  Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 2008:P10008–P10008

    Google Scholar 

  • Bolen EG (2000) Waterfowl management: yesterday and tomorrow. J Wildl Manag 64:323–335

    Google Scholar 

  • Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83

    PubMed  Google Scholar 

  • Broadley A, Stewart-Koster B, Burford MA, Brown CJ (2022) A global review of the critical link between river flows and productivity in marine fisheries. Rev Fish Biol Fisheries 32:805–825

    Google Scholar 

  • Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Machler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9:378–400

    Google Scholar 

  • Brownscombe JW, Danylchuk AJ, Chapman JM, Gutowsky LFG, Cooke SJ (2017) Best practices for catch-and-release recreational fisheries—angling tools and tactics. Fish Res 186:693–705. https://doi.org/10.1016/j.fishres.2016.04.018

    Article  Google Scholar 

  • Brownscombe JW, Adams AJ, Young N, Griffin LP, Holder PE, Hunt J, Acosta A, Morley D, Boucek R, Cooke SJ, Danylchuk AJ (2019) Bridging the knowledge-action gap: a case of research rapidly impacting recreational fisheries policy. Mar Policy. https://doi.org/10.1016/j.marpol.2019.02.021

    Article  Google Scholar 

  • Brownscombe JW, Griffin LP, Brooks JL, Danylchuk AJ, Cooke SJ, Midwood JD (2022) Applications of telemetry to fish habitat science and management. Can J Fish Aquat Sci 79:1347–1359

    Google Scholar 

  • Bunnefeld N, Börger L, van Moorter B, Rolandsen CM, Dettki H, Solberg EJ, Ericsson G (2011) A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J Anim Ecol 80:466–476

    PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Google Scholar 

  • Carlson BS, Rotics S, Nathan R, Wikelski M, Jetz W (2021) Individual environmental niches in mobile organisms. Nat Commun 12:4572. https://doi.org/10.1038/s41467-021-24826-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chanton J, Lewis FG (2002) Examination of coupling between primary and secondary production in a river-dominated estuary: apalachicola Bay, Florida, USA. Limnol Oceanogr 47:683–697

    Google Scholar 

  • Chapman BB, Brönmark C, Nilsson JÅ, Hansson LA (2011a) The ecology and evolution of partial migration. Oikos 120:1764–1775

    Google Scholar 

  • Chapman EW, Jørgensen C, Lutcavage Molly E, Hilborn R (2011b) Atlantic bluefin tuna (Thunnus thynnus): a state-dependent energy allocation model for growth, maturation, and reproductive investment. Can J Fish Aquat Sci 68:1934–1951. https://doi.org/10.1139/f2011-109

    Article  Google Scholar 

  • Chapman BB, Skov C, Hulthén K, Brodersen J, Nilsson PA, Hansson LA, Brönmark C (2012) Partial migration in fishes: definitions, methodologies and taxonomic distribution. J Fish Biol 81:479–499

    CAS  PubMed  Google Scholar 

  • Chevillot X, Drouineau H, Lambert P, Carassou L, Sautour B, Lobry J (2017) Toward a phenological mismatch in estuarine pelagic food web? PLoS ONE 12:e0173752

    PubMed Central  PubMed  Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:66111–66111

    Google Scholar 

  • Collette BB, Boustany A, Fox W, Graves J, Juan Jorda M, Restrepo V (2021) Thunnus thynnus. IUCN red list of threatened species

  • Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS, Birnie-Gauvin K, Griffin LP, Brownscombe JW (2022) The movement ecology of fishes. J Fish Biol 101:756–779

    PubMed  Google Scholar 

  • Cort JL, Abaunza P (2015) The fall of the tuna traps and the collapse of the Atlantic bluefin tuna, Thunnus thynnus (L.), fisheries of Northern Europe from the 1960s. Revi Fish Sci Aquacult 23:346–373

    Google Scholar 

  • Crabtree RE (1995) Relationship between lunar phase and spawning activity of tarpon, Megalops atlanticus, with notes on the distribution of larvae. Bull Mar Sci 56:895–899

    Google Scholar 

  • Crabtree RE, Cyr EC, Chacón Chaverri D, McLarney WO, Dean JM (1997) Reproduction of tarpon, Megalops atlanticus, from Florida and Costa Rican waters and notes on their age and growth. Bull Mar Sci 61:271–285

    Google Scholar 

  • Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, Raby GD, Cooke SJ (2017) Acoustic telemetry and fisheries management. Ecol Appl 27:1031–1049

    PubMed  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695:1–9

    Google Scholar 

  • Dale MRT, Fortin MJJ (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38

    Google Scholar 

  • Dame R, Alber M, Allen D, Mallin M, Montague C, Lewitus A, Chalmers A, Gardner R, Gilman C, Kjerfve B (2000) Estuaries of the south Atlantic coast of North America: their geographical signatures. Estuaries 23:793–819

    CAS  Google Scholar 

  • Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL (2023) Cascading effects of climate change on recreational marine flats fishes and fisheries. Environ Biol Fishes 106:381–416

    PubMed  Google Scholar 

  • Davis JE (2017) The Gulf: the making of an American Sea. Liveright Publishing

    Google Scholar 

  • Dingemanse NJ, Réale D (2005) Natural selection and animal personality. Behaviour 142:1159–1184

    Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? Bioscience 57:113–121

    Google Scholar 

  • Drymon JM, Jargowsky MB, Dance MA, Lovell M, Hightower CL, Jefferson AE, Kroetz AM, Powers SP (2021) Documentation of Atlantic tarpon (Megalops atlanticus) space use and move persistence in the northern Gulf of Mexico facilitated by angler advocates. Conserv Sci Pract 3:e331–e331

    Google Scholar 

  • Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction vulnerability in marine populations. Fish Fish 4:25–64

    Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    CAS  PubMed  Google Scholar 

  • Fernandes CAF, Cunha FEA, Silva CELS, Araújo A, Pereira RL, Viana DF, Magalhães W, Gondolo MAP, de Castro DMP, Adams A (2022) Population dynamics and movements of Atlantic tarpon, Megalops atlanticus, in the Parnaíba Delta Protected Area, Brazil: challenges for local fishery management planning. Environ Biol Fish. https://doi.org/10.1007/s10641-022-01307-8

    Article  Google Scholar 

  • Finn JT, Brownscombe JW, Haak CR, Cooke SJ, Cormier R, Gagne T, Danylchuk AJ (2014) Applying network methods to acoustic telemetry data: modeling the movements of tropical marine fishes. Ecol Model 293:139–149

    Google Scholar 

  • Friess C, Lowerre-Barbieri SK, Poulakis GR, Hammerschlag N, Gardiner JM, Kroetz AM, Bassos-Hull K, Bickford J, Bohaboy EC, Ellis RD, Menendez H, Patterson Iii WF, Price ME, Rehage JS, Shea CP, Smukall MJ, Burnsed Walters S, Wilkinson KA, Young J, Collins AB, DeGroot BC, Peterson CT, Purtlebaugh C, Randall M, Scharer RM, Schloesser RW, Wiley TR, Alvarez GA, Danylchuck AJ, Fox AG, Grubbs RD, Hill A, Locascio JV, O’Donnell PM, Skomal GB, Whoriskey FG, Griffin LP (2021) Regional-scale variability in the movement ecology of marine fishes revealed by an integrative acoustic tracking network. Mar Ecol Prog Ser 663:157–177

    Google Scholar 

  • Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21:1129–1164

    Google Scholar 

  • Gillson J (2011) Freshwater flow and fisheries production in estuarine and coastal systems: where a drop of rain is not lost. Rev Fish Sci 19:168–186

    Google Scholar 

  • Graham PM, Franks JS, Tilley JD, Gibson DP, Anderson EJ (2017) Occurrence of Atlantic tarpon, Megalops atlanticus, leptocephali in the Mississippi Sound estuary. Gulf Caribbean Res 28:SC12–SC16

    Google Scholar 

  • Griffin LP, Brownscombe JW, Adams AJ, Boucek RE, Finn JT, Heithaus MR, Rehage JS, Cooke SJ, Danylchuk AJ (2018) Keeping up with the Silver King: Using cooperative acoustic telemetry networks to quantify the movements of Atlantic tarpon (Megalops atlanticus) in the coastal waters of the southeastern United States. Fish Res 205:65–76. https://doi.org/10.1016/j.fishres.2018.04.008

    Article  Google Scholar 

  • Griffin LP, Brownscombe JW, Adams AJ, Holder PE, Filous A, Casselberry GA, Wilson JK, Boucek RE, Lowerre-Barbieri SK, Acosta A (2022a) Seasonal variation in the phenology of Atlantic tarpon in the Florida Keys: migration, occupancy, repeatability, and management implications. Mar Ecol Prog Ser 684:133–155

    Google Scholar 

  • Griffin LP, Casselberry GA, Lowerre-Barbieri SK, Acosta A, Adams AJ, Cooke SJ, Filous A, Friess C, Guttridge TL, Hammerschlag N (2022b) Predator–prey landscapes of large sharks and game fishes in the Florida Keys. Ecol Appl 32:e2584

    PubMed  Google Scholar 

  • Griffin LP, Friess C, Bakenhaster MD, Bassos-Hull K, Burnsed SW, Brownscombe JW, Cooke SJ, Ellis RD, Gardiner JM, Locascio J, Lowerre-Barbieri S, Poulakis GR, Wiley TR, Wilkinson KA, Wilson JK, Wooley AK, Adams AJ, Danylchuk AJ (2022c) Assessing the potential for red tide (Karenia brevis) algal bloom impacts on Atlantic tarpon (Megalops atlanticus) along the southwestern coast of Florida. Environ Biol Fishes. https://doi.org/10.1007/s10641-022-01324-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin LP, Casselberry GA, Markowitz EM, Brownscombe JW, Adams AJ, Horn B, Cooke SJ, Danylchuk AJ (2023) Angler and guide perceptions provide insights into the status and threats of the Atlantic tarpon (Megalops atlanticus) fishery. Mar Policy. https://doi.org/10.1016/j.marpol.2023.105569

    Article  Google Scholar 

  • Grimes CB (2001) Fishery production and the Mississippi river discharge. Fisheries 26:17–26. https://doi.org/10.1577/1548-8446(2001)026%3c0017:FPATMR%3e2.0.CO;2

    Article  Google Scholar 

  • Gross MR, Coleman RM, McDowall RM (1988) Aquatic productivity and the evolution of diadromous fish migration. Science 239:1291–1293

    CAS  PubMed  Google Scholar 

  • Guindon KY (2011) Evaluating lethal and sub-lethal effects of catch-and-release angling in Florida’s central gulf coast recreational Atlantic tarpon (Megalops atlanticus) Fishery. University of South Florida

    Google Scholar 

  • Hays GC, Bailey H, Bograd SJ, Bowen WD, Campagna C, Carmichael RH, Casale P, Chiaradia A, Costa DP, Cuevas E (2019) Translating marine animal tracking data into conservation policy and management. Trends Ecol Evol 34:459–473

    PubMed  Google Scholar 

  • Hellström G, Lennox RJ, Bertram MG, Brodin T (2022) Acoustic telemetry. Curr Biol 32:R863–R865

    PubMed  Google Scholar 

  • Hodgson JA, Thomas CD, Dytham C, Travis JM, Cornell SJ (2012) The speed of range shifts in fragmented landscapes. PLoS ONE 7:e47141. https://doi.org/10.1371/journal.pone.0047141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holbrook CM, Hayden T, Binder TR, Pye J (2020) glatos: a package for the Great Lakes Acoustic Telemetry Observation System. R package version 0.4.2.1. https://gitlab.oceantrack.org/GreatLakes/glatos

  • Horowitz LB, Allen PJ, Neal JW, Correa SB (2023) Postrelease mortality of angled tarpon in Puerto Rico. Mar Coast Fish 15:e10238

    Google Scholar 

  • Huntley B, Collingham YC, Green RE, Hilton GM, Rahbek C, Willis SG (2006) Potential impacts of climatic change upon geographical distributions of birds. Ibis 148:8–28

    Google Scholar 

  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF, Flemming JEM, Whoriskey FG (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642–1255642. https://doi.org/10.1126/science.1255642

    Article  CAS  PubMed  Google Scholar 

  • ICES (2007) Report of the Workshop on Testing the Entrainment Hypothesis (WKTEST). ICES Document CM 2007/LRC: 10

  • IPCC (2021) Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M, Huang M, Leitzell K, Lonnoy E, Matthews J, TK M, Waterfield T, Yelekçi R, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 2391

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638. https://doi.org/10.1126/science.1059199

    Article  CAS  PubMed  Google Scholar 

  • Jacoby DMPP, Freeman R (2016) Emerging network-based tools in movement ecology. Trends Ecol Evol 31:301–314. https://doi.org/10.1016/j.tree.2016.01.011

    Article  PubMed  Google Scholar 

  • Jacoby DMPP, Brooks EJ, Croft DP, Sims DW (2012) Developing a deeper understanding of animal movements and spatial dynamics through novel application of network analyses. Methods Ecol Evol 3:574–583. https://doi.org/10.1111/j.2041-210X.2012.00187.x

    Article  Google Scholar 

  • June FC, Chamberlin JL (1959) The role of the estuary in the life history and biology of Atlantic menhaden. Proc Gulf Caribbean Fish Inst 11:41–45

    Google Scholar 

  • Kassambara A, Mundt F (2021) Factoextra: extract and visualize the results of multivariate data analyses, R Package Version 1.0. 7. 2020

  • Killen SS, Adriaenssens B, Marras S, Claireaux G, Cooke SJ (2016) Context dependency of trait repeatability and its relevance for management and conservation of fish populations. Conserv Physiol 4:cow007. https://doi.org/10.1093/conphys/cow007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klinard NV, Matley JK (2020) Living until proven dead: addressing mortality in acoustic telemetry research. Rev Fish Biol Fish 30:485–499

    Google Scholar 

  • Kokomoor K (2010) The “most strenuous of anglers’ sports is tarpon fishing”: the silver king as progressive era outdoor sport. J Sport Hist 37:347–364

    Google Scholar 

  • Kurth BN, Peebles EB, Stallings CD (2019) Atlantic Tarpon (Megalops atlanticus) exhibit upper estuarine habitat dependence followed by foraging system fidelity after ontogenetic habitat shifts. Estuar Coast Shelf Sci 225:106248–106248. https://doi.org/10.1016/j.ecss.2019.106248

    Article  CAS  Google Scholar 

  • Lascelles B, Notarbartolo Di Sciara G, Agardy T, Cuttelod A, Eckert S, Glowka L, Hoyt E, Llewellyn F, Louzao M, Ridoux V (2014) Migratory marine species: their status, threats and conservation management needs. Aquat Conserv Mar Freshwat Ecosyst 24:111–127

    Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Google Scholar 

  • Lédée EJI, Heupel MR, Taylor MD, Harcourt RG, Jaine FRA, Huveneers C, Udyawer V, Campbell HA, Babcock RC, Hoenner X (2021) Continental-scale acoustic telemetry and network analysis reveal new insights into stock structure. Fish Fish 22:987–1005

    Google Scholar 

  • Leggett WC (1977) The ecology of fish migrations. Annu Rev Ecol Syst 8:285–308

    Google Scholar 

  • Lennox RJ, Chapman JM, Souliere CM, Tudorache C, Wikelski M, Metcalfe JD, Cooke SJ (2016) Conservation physiology of animal migration. Conserv Physiol 4:cov072. https://doi.org/10.1093/conphys/cov072

    Article  PubMed Central  PubMed  Google Scholar 

  • Lennox RJ, Aarestrup K, Cooke SJ, Cowley PD, Deng ZD, Fisk AT, Harcourt RG, Heupel M, Hinch SG, Holland KN (2017) Envisioning the future of aquatic animal tracking: technology, science, and application. Bioscience 67:884–896

    Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121. https://doi.org/10.2307/4087240

    Article  Google Scholar 

  • Limburg KE, Waldman JR (2009) Dramatic declines in North Atlantic diadromous fishes. Bioscience 59:955–965

    Google Scholar 

  • Lowerre-Barbieri SK, Catalán IA, Frugård Opdal A, Jørgensen C (2019) Preparing for the future: integrating spatial ecology into ecosystem-based management. ICES J Mar Sci 76:467–476

    Google Scholar 

  • Lowerre-Barbieri SK, Friess C, Griffin LP, Morley D, Skomal GB, Bickford JW, Hammerschlag N, Rider MJ, Smukall MJ, van Zinnicq Bergmann MPM, Guttridge TL, Kroetz AM, Grubbs RD, Gervasi CL, Rehage JS, Poulakis GR, Bassos-Hull K, Gardiner JM, Casselberry GA, Young J, Perkinson M, Abercrombie DL, Addis DT, Block BA, Acosta A, Adams AJ, Danylchuk AJ, Cooke SJ, Whoriskey FG, Brownscombe JW (2021) Movescapes and eco-evolutionary movement strategies in marine fish: assessing a connectivity hotspot. Fish Fish 22:1321–1344. https://doi.org/10.1111/faf.12589

    Article  Google Scholar 

  • Lüdecke D (2021) sjPlot: data visualization for statistics in social science. R package version 2.8.10

  • Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D (2021) performance: an R package for assessment, comparison and testing of statistical models. J Open Source Softw 6:3139

    Google Scholar 

  • Luo J, Ault JS, Ungar BT, Smith SG, Larkin MF, Davidson TN, Bryan DR, Farmer NA, Holt SA, Alford AS, Adams AJ, Humston R, Marton AS, Mangum D, Kleppinger R, Requejo A, Robertson J (2020) Migrations and movements of Atlantic tarpon revealed by two decades of satellite tagging. Fish Fish 21:290–318. https://doi.org/10.1111/faf.12430

    Article  Google Scholar 

  • Matley JK, Klinard NV, Martins APB, Aarestrup K, Aspillaga E, Cooke SJ, Cowley PD, Heupel MR, Lowe CG, Lowerre-Barbieri SK (2022) Global trends in aquatic animal tracking with acoustic telemetry. Trends Ecol Evol 37:79–94

    PubMed  Google Scholar 

  • McGuire JL, Lawler JJ, McRae BH, Nuñez TA, Theobald DM (2016) Achieving climate connectivity in a fragmented landscape. Proc Natl Acad Sci 113:7195–7200

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMillen-Jackson AL, Bert TM, Cruz-Lopez H, Seyoum S, Orsoy T, Crabtree RE (2005) Molecular genetic variation in tarpon (Megalops atlanticus Valenciennes) in the northern Atlantic Ocean. Mar Biol 146:253–261

    CAS  Google Scholar 

  • Meltzer E (1994) Global overview of straddling and highly migratory fish stocks: The nonsustainable nature of high seas fisheries. Ocean Dev Int Law 25:255–344

    Google Scholar 

  • Merkle JA, Abrahms B, Armstrong JB, Sawyer H, Costa DP, Chalfoun AD (2022) Site fidelity as a maladaptive behavior in the Anthropocene. Front Ecol Environ 20:187–194. https://doi.org/10.1002/fee.2456

    Article  Google Scholar 

  • Mill A, Ford P, Ault JS, Katner S (2010) A passion for tarpon. Wild River, Mill Creek

    Google Scholar 

  • Miller-Rushing AJ, Høye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans R Soc B Biol Sci 365:3177–3186

    Google Scholar 

  • Mittelbach GG, Ballew NG, Kjelvik MK (2014) Fish behavioral types and their ecological consequences. Can J Fish Aquat Sci 71:927–944

    Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Newman ME (2006a) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newman MEJ (2006b) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:36104–36104

    CAS  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:26113–26113

    CAS  Google Scholar 

  • Parrish JD (2000) Behavioral, energetic, and conservation implications of foraging plasticity during migration. Stud Avian Biol 20:53–70

    Google Scholar 

  • Pauly D, Christensen V, Guénette S, Pitcher TJ, Sumaila UR, Walters CJ, Watson R, Zeller D (2002) Towards sustainability in world fisheries. Nature 418:689–695

    CAS  PubMed  Google Scholar 

  • Petitgas P, Reid D, Planque B, Nogueira E, O’Hea B, Cotano U (2006) The entrainment hypothesis: an explanation for the persistence and innovation in spawning migrations and life cycle spatial patterns. ICES Document CM

  • Pons P, Latapy M (2005) Computing communities in large networks using random walks. Jgraph Algorithms Appl 10:284–293

    Google Scholar 

  • Porch CE, Bonhommeau S, Diaz GA, Arrizabalaga H, Melvin G (2019) The journey from overfishing to sustainability for Atlantic bluefin tuna, Thunnus thynnus. In: Block B (ed) The future of bluefin tunas: ecology, fisheries management, and conservation. John Hopkins University Press

  • R Core Team (2022) R: a language and environment for statistical computing. R foundation for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76:36106–36106

    Google Scholar 

  • Raynal JM, Weeks R, Pressey RL, Adams AJ, Barnett A, Cooke SJ, Sheaves M (2020) Habitat-dependent outdoor recreation and conservation organizations can enable recreational fishers to contribute to conservation of coastal marine ecosystems. Glob Ecol Conserv 24:e01342–e01342

    Google Scholar 

  • Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74:16110–16110

    Google Scholar 

  • Rocha J, Yletyinen J, Biggs R, Blenckner T, Peterson G (2015) Marine regime shifts: drivers and impacts on ecosystems services. Philos Trans R Soc B Biol Sci 370:20130273–20130273

    Google Scholar 

  • Rodríguez-Marín E, Clear N, Cort JL, Megalofonou P, Neilson JD, Neves dos Santos M, Olafsdottir D, Rodriguez-Cabello C, Ruiz M, Valeiras J (2007) Report of the 2006 ICCAT workshop for bluefin tuna direct ageing. ICCAT, Collective Volume of Scientific Papers 60: 1349–1392

  • Roff DA (1988) The evolution of migration and some life history parameters in marine fishes. Environ Biol Fishes 22:133–146

    Google Scholar 

  • Roman M, Zhang X, McGilliard C, Boicourt W (2005) Seasonal and annual variability in the spatial patterns of plankton biomass in Chesapeake Bay. Limnol Oceanogr 50:480–492

    Google Scholar 

  • Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA (2014) Conserving mobile species. Front Ecol Environ 12:395–402. https://doi.org/10.1890/130237

    Article  Google Scholar 

  • Safina C, Klinger DH (2008) Collapse of bluefin tuna in the western Atlantic. Conserv Biol 22:243–246

    PubMed  Google Scholar 

  • Saura S, Bodin Ö, Fortin M-J, Frair J (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51:171–182. https://doi.org/10.1111/1365-2664.12179

    Article  Google Scholar 

  • Sawchuk JH, Beaudreau AH, Tonnes D, Fluharty D (2015) Using stakeholder engagement to inform endangered species management and improve conservation. Mar Policy 54:98–107

    Google Scholar 

  • Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nature. https://doi.org/10.1038/nature09060

    Article  PubMed  Google Scholar 

  • Schindler DE, Armstrong JB, Reed TE (2015) The portfolio concept in ecology and evolution. Front Ecol Environ 13:257–263

    Google Scholar 

  • Secor DH (2015) Migration ecology of marine fishes. JHU Press

    Google Scholar 

  • Shephard S, List CJ, Arlinghaus R (2022) Reviving the unique potential of recreational fishers as environmental stewards of aquatic ecosystems. Fish Fish 24:339–351

    Google Scholar 

  • Shipley ON, Matich P, Hussey NE, Brooks AML, Chapman D, Frisk MG, Guttridge AE, Guttridge TL, Howey LA, Kattan S (2023) Energetic connectivity of diverse elasmobranch populations–implications for ecological resilience. Proc R Soc B 290:20230262

    PubMed  Google Scholar 

  • Smith M, Fedler AJ, Adams AJ (2022) The economic impact of a recreational fishery provides leverage for conservation. Environ Biol Fishes 106:131–145

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. Freeman, New York

    Google Scholar 

  • Spitz DB, Hebblewhite M, Stephenson TR (2017) ‘MigrateR’: extending model-driven methods for classifying and quantifying animal movement behavior. Ecography 40:788–799

    Google Scholar 

  • Staudinger MD, Mills KE, Stamieszkin K, Record NR, Hudak CA, Allyn A, Diamond A, Friedland KD, Golet W, Henderson ME (2019) It’s about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fish Oceanogr 28:532–566

    PubMed Central  PubMed  Google Scholar 

  • Stein W III, Brown-Peterson NJ, Franks JS, O’Connell MT (2012) Evidence of spawning capable tarpon (Megalops Atlanticus) off the Louisiana Coast. Gulf Caribbean Res 24:73–74

    Google Scholar 

  • Stein W III, Shenker J, O’Connell MT (2016) A contribution to the life history of tarpon (Megalops atlanticus) in the northern Gulf of Mexico. Southeast Nat 15:496–512

    Google Scholar 

  • Sterling EJ, Betley E, Sigouin A, Gomez A, Toomey A, Cullman G, Malone C, Pekor A, Arengo F, Blair M (2017) Assessing the evidence for stakeholder engagement in biodiversity conservation. Biol Cons 209:159–171

    Google Scholar 

  • Stilwell H (2011) Glory of the silver king: the golden age of tarpon fishing. Texas A&M University Press, College Station

    Google Scholar 

  • Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8:1639–1644

    Google Scholar 

  • Stralberg D, Berteaux D, Drever CR, Drever M, Naujokaitis-Lewis I, Schmiegelow F, Tremblay J (2019) Conservation planning for boreal birds in a changing climate: a framework for action. Avian Conserv Ecol 14:13. https://doi.org/10.5751/ACE-01363-140113

    Article  Google Scholar 

  • Tamario C, Sunde J, Petersson E, Tibblin P, Forsman A (2019) Ecological and evolutionary consequences of environmental change and management actions for migrating fish. Front Ecol Evol 7:271–271

    Google Scholar 

  • Taylor MK, Cooke SJ (2014) Repeatability of movement behaviour in a wild salmonid revealed by telemetry. J Fish Biol 84:1240–1246

    CAS  PubMed  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates

    Google Scholar 

  • Ward R, Blandon IR, García de León FJ, Landry AM, Dailey W, Acuña Leal CD (2004) Studies in conservation genetics of tarpon (Megalops atlanticus)-IV. Population structure among Gulf of Mexico collection sites inferred from variation in restriction site polymorphisms of tarpon mitochondrial DNA; Estructura de los sitios de la coleccion en el Golfo de Mexico deducidos por la variacion en polimorfismos del ditio de la restriccion de la DNA mitochondrial de sabalo

  • Wilcove DS, Wikelski M (2008) Going, going, gone: is animal migration disappearing. PLoS Biol 6:e188–e188

    PubMed Central  PubMed  Google Scholar 

  • Wilson J, Adams AJ, Ahrens RNM (2019) Atlantic tarpon (Megalops atlanticus) nursery habitats: evaluation of habitat quality and broad-scale habitat identification. Environ Biol Fishes 102:383–402. https://doi.org/10.1007/s10641-018-0835-y

    Article  Google Scholar 

  • Wilson JK, Stevens PW, Blewett DA, Boucek R, Adams AJ (2023) A new approach to define an economically important fish as an umbrella flagship species to enhance collaborative stakeholder-management agency habitat conservation. Environ Biol Fishes 106:237–254

    Google Scholar 

  • Xu Y, Si Y, Wang Y, Zhang Y, Prins HHT, Cao L, de Boer WF (2019) Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecol Appl 29:e01960. https://doi.org/10.1002/eap.1960

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhemchuzhnikov MK, Versluijs TS, Lameris TK, Reneerkens J, Both C, van Gils JA (2021) Exploring the drivers of variation in trophic mismatches: a systematic review of long-term avian studies. Ecol Evol 11:3710–3725

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the researchers who helped maintain the many arrays that span both the Gulf of Mexico and Atlantic seaboard and those who shared detection data with us through integrated Tracking of Animals in the Gulf (iTAG), FACT network, Atlantic Cooperative Telemetry (ACT) network, and the Ocean Tracking Network (OTN). The Ocean Tracking Network (OTN) provided additional receiver loans. We thank the many fishing guides and anglers who assisted with the telemetry array design and M. atlanticus tagging for this project. Specifically, we thank Rob Aldridge, Nick Angelo, Justin Bachert, Will Benson, Carl Ball, Jordan Carter, Cody Cash, Frank Catino, Martin Carranza, Bruce Chard, Ryan Clase, Scott Collins, Brandon Cyr, Jared Cyr, Greg DeVault, Joel Dickey, Court Douthit, Greg Duval, Scott Dykes, Mo Estevez, Danny Flynn, Ron Gibson, Edward Glorioso, GT Gonzalez, Josh Greer, Keven Grubbs, Travis Holeman, Bear Holeman, Bill Housz, Bill Horn, Adam Hudson, Dave Hutcherson, John Jackson, Brian Jill, Chuck Jenks, Zack Jud, Ben Kurth, Rob Kramarz, Willy Le, Lenny Leonard, Trent Long, Austin Lowder, David Mangum, Warren Marshall, Augustine Moss, Brandon MvGraw, Gabe Nyblad, Scott Owens, Jordan Pate, Chris Peterson, Greg Peterson, Albert Ponzoa, CA Richardson, Tray Rodriguez, Cameron Schurlknight, Chris Slattery, Shane Smetak, Zack Stells, Jason Stock, Jason Sullivan, JR Waits, Ed Walker, Newman Weaver, and Chad Will. Lastly, we thank the contributions and reviews from three anonymous reviewers.

Funding

This project was funded by Bonefish & Tarpon Trust with support from Maverick Boat Group.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LG, JB, AA, SC, AD. Methodology: LG, JB, AA, SC, AD. Formal analyses: LG. Investigation: LG, JB, JW, GC, PH, AF, SLB, AD. Writing—original draft: LG, JB, AA, SC, AD. Writing—review and editing: all authors.

Corresponding author

Correspondence to Lucas P. Griffin.

Ethics declarations

Conflict of interests

The authors have no competing or relevant financial/non-financial interests to disclose related to the work submitted for publication.

Ethics approval

Handling procedures were conducted in accordance with the American Association for Laboratory Animal Science (IACUC protocol 2016-0049, University of Massachusetts).

Additional information

Responsible Editor: R. Cuthbert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 946 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffin, L.P., Brownscombe, J.W., Adams, A.J. et al. Individual variation and repeatability of Atlantic tarpon Megalops atlanticus migrations in the southern US: implications for conservation and management. Mar Biol 170, 168 (2023). https://doi.org/10.1007/s00227-023-04311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-023-04311-3

Keywords

Navigation