Skip to main content

Advertisement

Log in

Trophic dynamics and properties of the marine ecosystem of Campeche Bank, Mexico

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Campeche Bank located in the Yucatan Peninsula, Mexico is characterized by particular oceanographic and physiographic conditions that promote great biodiversity, including abundant fishery resources. Systematic sampling through oceanographic campaigns (November 2015, April 2016), produced high-quality data to generate a trophic model balance using Ecopath software. The goal of this study is to know the baseline of the structure and functioning of this important marine area. The predator/prey matrix was drawn up from the stomach content analysis of 186 fish species integrated into 47 families. The schematic representation exemplifies a complex trophic interaction of 22 trophic groups, including 10 fish groups, 8 invertebrate, zooplankton, phytoplankton, benthic producers, and detritus. Production and consumption of biomass and ecotrophic efficiency values were calculated for each of the trophic groups. The Total System Throughput was of 319.514 t/km2/year. The Ascendency, system Overhead, and Development Capacity were of 476.4, 673.1, and 1150.0 flow bits, respectively. Campeche Bank is an oligotrophic system with an intermediate state of resilience to environmental variations, growth potential intermediate, and greatly influenced by loop and Caribbean currents. These properties together with indicators of overfishing in the system and pollution (hydrocarbons), highlight the requirement of controlling fishery pressures and monitor hydrocarbons industry in the area to maintain its function and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All the captured fish specimens were preserved and cataloged at the ichthyological collection of the CINVESTAV Merida (CINV-NEC) with the reference number YUC-PEC 084.0999.

Code availability

The information presented in this manuscript corresponds to the input parameters to the software Ecopath with Ecosim, and anyone can replicate the results with these parameters.

References

  • Abarca-Arenas LG, Ulanowicz RE (2002) The effects of taxonomic aggregation on network analysis. Ecol Model 149(3):285–296

    Article  Google Scholar 

  • Abascal-Monroy IM, Zetina-Rejón MJ, Escobar-Toledo F, López-Ibarra GA, Sosa-López A, Tripp-Valdez A (2016) Functional and structural food web comparison of terminos Lagoon, Mexico in three periods (1980, 1998, 2011). Estuar Coast 39(4):1282–1293. https://doi.org/10.1007/s12237-015-0054-0

    Article  Google Scholar 

  • Aguilar-Medrano R, Vega-Cendejas ME (2019) Implications of the environmental heterogeneity on the distribution of the fish functional diversity of the Campeche Bank, Gulf of Mexico. Marine Biodivers 49(4):1913–1929. https://doi.org/10.1007/s12526-019-00954-y

    Article  Google Scholar 

  • Allen KR (1971) Relation between production and biomass. J Fish Res 28(10):1573–1581. https://doi.org/10.1139/f71-236

    Article  Google Scholar 

  • Alva-Basurto JC, Arias-González JE (2014) Modelling the effects of climate change on a Caribbean coral reef food web. Ecol Model 289:1–14. https://doi.org/10.1016/j.ecolmodel.2014.06.014

    Article  Google Scholar 

  • Álvarez Torres P, Rabalais NN, Piña Gutiérrez JM, Padrón López RM (2017) Research and community of practice of the Gulf of Mexico large marine ecosystem. Environ Dev 22:166–174

    Article  Google Scholar 

  • Álvarez-Hernández JH (2003) Trophic model of a fringing coral reef in the southern Mexican Caribbean. Fish Cent Res Rep 11:227–235

    Google Scholar 

  • Arias-González JE (1998) Trophic models of protected and unprotected coral reef ecosystems in the south of the Mexican Caribbean. J Fish Biol 53:236–255. https://doi.org/10.1111/j.1095-8649.1998.tb01030.x

    Article  Google Scholar 

  • Arias-González JE, Nuñez-Lara E, González-Salas C, Galzin R (2004) Trophic models for investigation of fishing effect on coral reef ecosystems. Ecol Model 172(2–4):197–212

    Article  Google Scholar 

  • Arias-González JE, González-Gándara C, Luis Cabrera J, Christensen V (2011) Predicted impact of the invasive lionfish Pterois volitans on the food web of a Caribbean. Environ Res. https://doi.org/10.1016/j.envres.2011.07.008

    Article  PubMed  Google Scholar 

  • Arreguín-Sánchez F (2000) Octopus-red grouper interaction in the exploited ecosystem of the northern continental shelf of Yucatan. Mexico Ecol Model 129(2–3):119–129

    Article  Google Scholar 

  • Arreguín-Sánchez F (2014) Measuring resilience in aquatic trophic networks from supply-demand-of-energy relationships. Ecol Model 272:271–276. https://doi.org/10.1016/j.ecolmodel.2013.10.018

    Article  Google Scholar 

  • Arreguín-Sánchez F, Ruiz-Barreiro TM (2014) Approaching a functional measure of vulnerability in marine ecosystems. Ecol Indic 45:130–138. https://doi.org/10.1016/j.ecolind.2014.04.009

    Article  Google Scholar 

  • Arreguín-Sánchez F, Seijo JC, Valero-Pacheco E (1993) An application of ECOPATH II to the north continental shef ecosystem of Yucatan, Mexico. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystems. ICLARM Conference Processdings, Manila, pp 269–278

    Google Scholar 

  • Arreguín-Sánchez F, Arcos E, Chávez EA (2002) Flows of biomass and structure in an exploited benthic ecosystem in the Gulf of California. Mexico Ecol Modell 156(2–3):167–183

    Article  Google Scholar 

  • Arreguín-Sánchez F, Zetina-Rejón M, Manickchand-Heileman S, Ramírez-Rodríguez M, Vidal L (2004) Simulated response to harvesting strategies in an exploited ecosystem in the southwestern Gulf of Mexico. Ecol Model 172(2–4):421–432

    Article  Google Scholar 

  • Baird D, Ulanowicz RE (1993) Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Mar Ecol Prog Ser 99(3):221–237

    Article  Google Scholar 

  • Barbier EA, Strand I (1998) Valuing mangrove-fishery linkages. Environ Resour Econ 12:151–166

    Article  Google Scholar 

  • Becker A, Cowley PD, Whitfield AK, Järnegren J, Næsje TF (2011) Diel fish movements in the littoral zone of a temporarily closed South African estuary. J Exp Mar Biol Ecol 406(1–2):63–70

    Article  Google Scholar 

  • Blomberg BN, Montagna PA (2014) Meta-analysis of Ecopath models reveals secondary productivity patterns across the Gulf of Mexico. Ocean Coast Manag 100:32–40. https://doi.org/10.1016/j.ocecoaman.2014.07.014

    Article  Google Scholar 

  • Bondavalli C, Bodini A (2014) How interaction strength affects the role of functional and redundant connections in food webs. Ecol Complex 20:97–106. https://doi.org/10.1016/j.ecocom.2014.09.004

    Article  Google Scholar 

  • Buchheister A, Latour RJ (2015) Diets and trophic-guild structure of a diverse fish assemblage in Chesapeake Bay, U.S.A. J Fish Biol 86:967–992. https://doi.org/10.1111/jfb.12621

    Article  CAS  PubMed  Google Scholar 

  • Burns TP (1989) Lindeman’s contradiction and the trophic structure of ecosystems. Ecology 70(5):1355–1362. https://doi.org/10.2307/1938195

    Article  Google Scholar 

  • Cardona L (2006) Trophic cascades uncoupled in a coastal marsh ecosystem. Biol Invasions 8(4):835–842

    Article  Google Scholar 

  • Carlotti F (2019) Plankton: population dynamics models. In: Cochran JK, Bokuniewicz HJ, Yager PL (eds) Encyclopedia of ocean sciences. Academic Press, Oxford, pp 571–582

    Chapter  Google Scholar 

  • Chagaris DD, Mahmoudi B, Walters CJ, Allen MS (2015) Simulating the trophic impacts of fishery policy options on the West Florida Shelf using Ecopath with Ecosim. Mar Coast Fish 7(1):44–58. https://doi.org/10.1080/19425120.2014.966216

    Article  Google Scholar 

  • Chávez EA, Garduño M, Arreguín-Sánchez F (1993) Trophic dynamic structure Celestun Lagoon Southern Gulf of Mexico. Trop Model Aquat Ecosyst 26:186–192

    Google Scholar 

  • Chi-Espínola AA, Vega-Cendejas ME (2013) Feeding habits of Sphoeroides testudineus (Perciformes: Tetraodontidae) in the lagoon system of Ria Lagartos, Yucatan Mexico. Rev Biol Trop 61(2):849–858

    Article  PubMed  Google Scholar 

  • Christensen V (1995) Ecosystem maturity—towards quantification. Ecol Modell 77:3–32

    Article  Google Scholar 

  • Christensen V, Pauly D (1992) ECOPATH II a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Modell 61(3):169–185

    Article  Google Scholar 

  • Christensen V, Pauly D (1993) Flow characteristics of aquatic ecosystems. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystems, international center for Living Aquatic Resources Management (ICLARM). ICLARM, Manila, pp 338–352

    Google Scholar 

  • Christensen V, Walters CJ (2004) Ecopath with Ecosim: Methods, capabilities and limitations. Ecol Model 172(2–4):109–139

    Article  Google Scholar 

  • Christensen V, Walters CJ, Pauly D (2005) Ecopath with Ecosim: a user’s guide. Fish Bethesda

  • Contreras F (1993) Ecosistemas Costeros Mexicanos. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

    Google Scholar 

  • Costanza R, Mageau M (1999) What is a healthy ecosystem? Aquat Ecol 33:105–115

    Article  Google Scholar 

  • Day JW, Yáñez-Arancibia A, Vásquez HA et al (2013) Gulf of Mexico origin, waters, and biota: volume 4, ecosystem-based management. Texas A&M University Press, College Station

    Google Scholar 

  • de Mutsert K, Steenbeek J, Lewis K et al (2016) Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecol Model 331:142–150. https://doi.org/10.1016/j.ecolmodel.2015.10.013

    Article  CAS  Google Scholar 

  • Dengbol P (1993) The pelagic zone of central Lake Malawi. A trophic box model. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystems. ICLARM, Manila, pp 110–115

    Google Scholar 

  • Dunne AJ, Williams JR, Martinez DN (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5(4):558–567

    Article  Google Scholar 

  • Durán-Campos E, Salas de León DA, Monreal-Gómez MA, Coria-Monter E (2017) Patterns of chlorophyll-a distribution linked to mesoscale structures in two contrasting areas Campeche Canyon and Bank, Southern Gulf of Mexico. J Sea Res 123:30–38

    Article  Google Scholar 

  • Ehrnsten E, Timmerman K, Norkko A, Gustafsson BG (2019) Benthic–pelagic coupling in coastal seas modeling macrofaunal biomass production in response to sedimentation. J Mar Syst 196:36–47. https://doi.org/10.1016/j.jmarsys.2019.04.003

    Article  Google Scholar 

  • Essington T, Paulsen C (2010) Trophic. Cascades in open ocean ecosystems. In: Terborg J, Estes JA (eds) Trophic Cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, DC, pp 91–106

    Google Scholar 

  • Ewing TE, Galloway WE (2019) Chapter 16 evolution of the northern Gulf of Mexico Sedimentary Basin. In: Miall AD (ed) The sedimentary basins of the United States and Canada, 2nd edn. Elsevier, Toronto, pp 627–694

    Chapter  Google Scholar 

  • Felder DL, Camp DK (2009) Gulf of Mexico origin, waters, and biota: volume i, biodiversity. Texas A&M University Press, College Station

    Google Scholar 

  • Froese R, Pauly D (2019) FishBase. http://www.fishbase.org/search.php. Accessed 20 April 2020

  • García-Ríos V, Alpuche-Gual L, Herrera-Silveira J, Montero-Muñoz J, Morales-Ojeda S, Pech D et al (2013) Towards a coastal condition assessment and monitoring of the Gulf of Mexico Large Marine Ecosystem (GoM LME): Terminos Lagoon pilot site. Environ Dev 7:72–79

    Article  Google Scholar 

  • Geers TM, Pikitch EK, Frisk MG (2016) An original model of the northern Gulf of Mexico using Ecopath with Ecosim and its implications for the effects of fishing on ecosystem structure and maturity. Deep Res Part II Top Stud Oceanogr 129:319–331. https://doi.org/10.1016/j.dsr2.2014.01.009

    Article  Google Scholar 

  • Gilbert AJ (2009) Connectance indicates the robustness of food webs when subjected to species loss. Ecol Indic 9(1):72–80

    Article  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479. https://doi.org/10.1126/science.1060040

    Article  CAS  PubMed  Google Scholar 

  • Hajisamae S, Chou LM, Ibrahim S (2004) Feeding habits and trophic relationships of fishes utilizing an impacted coastal habitat, Singapore. Hydrobiologia 520(1):61–71. https://doi.org/10.1023/B:HYDR.0000027727.90956.a9

    Article  Google Scholar 

  • Heath MR, Cook RM, Cameron AI, Morris DJ, Speirs DC (2014) Cascading ecological effects of eliminating fishery discards. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms4893

    Article  CAS  Google Scholar 

  • Hernández-Guevara NA, Pech D, Ardisson P (2008) Temporal trends in benthic macrofauna composition in response to seasonal variation in a tropical coastal lagoon, Celestun, Gulf of Mexico. Mar Freshw Res 59(9):772–779

    Article  Google Scholar 

  • Heymans JJ, Coll M, Link JS et al (2016) Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol Model 331:173–184. https://doi.org/10.1016/j.ecolmodel.2015.12.007

    Article  Google Scholar 

  • Hirata H, Ulanowicz RE (1985) Information theoretical analysis of the aggregation and hierarchical structure of ecological networks. J Theor Biol 116(3):321–341

    Article  Google Scholar 

  • Karnauskas M, Walter JF, Campbell MD, Pollack AG, Drymon JM, Powers S (2017) Red snapper distribution on natural habitats and artificial structures in the northern Gulf of Mexico. Mar Coast Fish 9(1):50–67. https://doi.org/10.1080/19425120.2016.1255684

    Article  Google Scholar 

  • Kuk-Dzul JG, Gold-Bouchot G, Ardisson PL (2012) Benthic infauna variability in relation to environmental factors and organic pollutants in tropical coastal lagoons from the northern Yucatan Peninsula. Mar Pollut Bull 64(12):2725–2733

    Article  CAS  PubMed  Google Scholar 

  • Lalli C, Parsons TR (1997) Biological oceanography: an introduction. Second. Elsevier Science, Vancouver

    Google Scholar 

  • Larson RA, Brooks GR, Schwing PT, Holmes CW, Carter SR, Hollander DJ (2018) High-resolution investigation of event driven sedimentation: Northeastern Gulf of Mexico. Anthropocene 24:40–50

    Article  Google Scholar 

  • Libralato S (2008) System Omnivory Index. In: Jørgensen SE, Fath BD (eds) Ecological indicators. Academic Press, Oxford, pp 3472–3477

    Google Scholar 

  • Libralato S, Christensen V, Pauly D (2006) A method for identifying keystone species in food web models. Ecol Model 195:153–171. https://doi.org/10.1016/j.ecolmodel.2005.11.029

    Article  Google Scholar 

  • Lindeman RL (1942) The trophic dynamic aspect ecology. Ecology 23(4):399–417

    Article  Google Scholar 

  • Link JS (2010) Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: a plea for PREBAL. Ecol Model 221:1580–1591. https://doi.org/10.1016/j.ecolmodel.2010.03.012

    Article  Google Scholar 

  • Lira A, Angelini R, Le Loch F, Ménard F, Lacerda C, Frédou T et al (2018) Trophic flow structure of a neotropical estuary in northeastern Brazil and the comparison of ecosystem model indicators of estuaries. J Mar Syst 182:31–45

    Article  Google Scholar 

  • Manickchand-Heileman S, Soto LA, Escobar E (1998) A preliminary trophic model of the continental shelf, south-western Gulf of Mexico. Estuar Coast Shelf Sci 46(6):885–899

    Article  Google Scholar 

  • Martínez M, Feagin R, Yeager K, Day J, Costanza R, Harris J et al (2012) Artificial modifications of the coast in response to the deepwater horizon oil spill: quick solutions or long-term liabilities? Front Ecol Environ 10:44–49

    Article  Google Scholar 

  • Mexicano-Cíntora G, Leonce-Valencia CO, Salas S, Vega-Cendejas ME (2007) Recursos pesqueros de Yucatán: fichas técnicas y referencias bibliográficas. Centro de Investigación y Estudios Avanzados del IPN, Mérida

    Google Scholar 

  • Monroy C, Salas S, Bello-Pineda J (2010) Dynamics of fishing gear and spatial allocation of fishing effort in a multispecies fleet. N Am J Fish Manag 30:1187–1202. https://doi.org/10.1577/m09-101.1

    Article  Google Scholar 

  • Morales-Zárate MV, Arreguín-Sánchez F, López-Martínez J, Lluch-Cota SE (2004) Ecosystem trophic structure and energy flux in the Northern Gulf of California. México Ecol Model 174(4):331–345

    Article  Google Scholar 

  • Morales-Zárate MV, Lluch-Cota SE, Serviere-Zaragoza E, del Próo SG (2011) Modeling an exploited rocky coastal ecosystem: Bahia Tortugas. Mexico Ecol Model 5:1185–1191

    Article  Google Scholar 

  • Morato T, Lemey E, Menezes G et al (2016) Food-web and ecosystem structure of the open-ocean and deep-sea environments of the azores, NE Atlantic. Front Mar Sci 3:1–13. https://doi.org/10.3389/fmars.2016.00245

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2017) NOAA. How does oil impact marine life? National Ocean Service website. https://oceanservice.noaa.gov/facts/oilimpacts.html. Accessed 13 Aug 2017

  • Ocaña FA, Pech D, Simões N, Hernández-Ávila I (2019) Spatial assessment of the vulnerability of benthic communities to multiple stressors in the Yucatan Continental Shelf, Gulf of Mexico. Ocean Coast Manag 181:104900. https://doi.org/10.1016/j.ocecoaman.2019.104900

    Article  Google Scholar 

  • Odum E (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Odum E (1986) Fundamentos de ecología. McGraw Hill I, Mexico

    Google Scholar 

  • Opitz S (1996) Trophic interactions in Caribbean coral reefs. ICLARM Tech Rep 43:341

    Google Scholar 

  • Overstreet R, Hawkins W (2017) Diseases and mortalities of fishes and other animals in the Gulf of Mexico. In: Ward C (ed) Habitats and Biota of the Gulf of Mexico: before the deepwater horizon oil spill. Springer, New York, pp 1589–1738

    Chapter  Google Scholar 

  • Palacios-Sánchez S, Vega-Cendejas ME, Hernández de Santillana M (2015) Evaluación ictiológica en el Corredor Costero de Yucatán (Sureste del Golfo de México). Rev Biodivers Neotrop 5:145. https://doi.org/10.18636/bioneotropical.v5i2.167

    Article  Google Scholar 

  • Palomares ML, Pauly D (1989) A multiple regression model for predicting the food consumption of marine fish populations. Aust J Mar Freshw Res 40:259–273

    Article  Google Scholar 

  • Pauly D (1980) On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J Mar Sci 39:175–192. https://doi.org/10.1093/icesjms/39.2.175

    Article  Google Scholar 

  • Pauly D (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57:697–706. https://doi.org/10.1006/jmsc.2000.0726

    Article  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F (1998) Fishing down marine food webs. Science 279:860–863. https://doi.org/10.1126/science.279.5352.860

    Article  CAS  PubMed  Google Scholar 

  • Pech D, Ardisson PL, Hernández-Guevara NA (2007) Benthic community response to habitat variation: a case of study from a natural protected area, the Celestun coastal lagoon. Cont Shelf Res 20:2523–2533

    Article  Google Scholar 

  • Pedroza C (2013) Middlemen, informal trading and its linkages with IUU fishing activities in the port of Progreso, Mexico. Mar Policy 39:135–143

    Article  Google Scholar 

  • Peters EM, Zaragoza-Álvarez RA, Herzka SZ, Herguera-García JC (2021) Introducción. In: Herzka SZ, Zaragoza-Álvarez RA, Peters EM, Cárdenas-Hernández G (eds) Atlas de línea base ambiental del golfo de México (tomo I). Consorcio de Investigación del Golfo de México, México

    Google Scholar 

  • Petersen ME, Maar M, Larsen J, Møller EF, Hansen PJ (2017) Trophic cascades of bottom-up and top-down forcing on nutrients and plankton in the Kattegat, evaluated by modeling. J Mar Syst 169:25–39. https://doi.org/10.1016/j.jmarsys.2017.01.006

    Article  Google Scholar 

  • Piñeiro R, Giménez E, Moreno V, Burgos R, Betanzos A (2001) Características térmicas del Banco de Campeche. Cienc Pesq 15:83–88

    Google Scholar 

  • Quijano D, Salas S, Monroy-García C, Velazquez-Abundader I (2018) Factors contributing to technical efficiency in a mixed fishery: implications in buyback programs. Mar Policy 94:61–70

    Article  Google Scholar 

  • Rivera-Arriaga E, Lara-Dominguez L, Villalobos-Zapata G, Yañes-Arancibia A (2003) Trophodynamic ecology of two critical habitats (seagrasses and mangroves) in Términos Lagoon, southern Gulf of Mexico. Fish Cent Res Rep 11(6):245–254

    Google Scholar 

  • Robertson DR, Domínguez-Dominguez O, López Aroyo YM et al (2019) Reef-associated fishes from the offshore reefs of western Campeche Bank, Mexico, with a discussion of mangroves and seagrass beds as nursery habitats. Zookeys 843:71–115. https://doi.org/10.3897/zookeys.843.33873

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Troncoso AP, Rodríguez-Zaragoza FA, Mayfield AB, Cupul-Magaña AL (2019) Temporal variation in invertebrate recruitment on an Eastern Pacific coral reef. J Sea Res 145:8–15

    Article  Google Scholar 

  • Rubio-Polania JC, Torruco-Gómez D, González-Solis A et al (2018) Megafauna benthic of outer margins of the continental shelf of Yucatan Peninsula. Reg Stud Mar Sci 24:184–195. https://doi.org/10.1016/j.rsma.2018.08.014

    Article  Google Scholar 

  • Ruiz-Cauich LE, Schmitter-Soto JJ, Barba-Macias E, González-Solís D (2016) Stability vs. organization: potential of a trophic model for the management of shallow tropical streams. Food Webs 6:38–47

    Article  Google Scholar 

  • Sagarese SR, Lauretta MV, Walter JF (2017) Progress towards a next-generation fisheries ecosystem model for the northern Gulf of Mexico. Ecol Modell 345:75–98. https://doi.org/10.1016/j.ecolmodel.2016.11.001

    Article  Google Scholar 

  • Silva-Júnior CAB, Mérigot B, Lucena-Frédou F, Ferreira BP, Coxey MS, Rezende SM et al (2015) Functional diversity of fish in tropical estuaries: a traits-based approach of communities in Pernambuco, Brazil. Estuar Coast Shelf Sci 198:413–420

    Article  Google Scholar 

  • Soto L, Botello AV, Licea S, Lizárraga-Partida M, Yáñez-Arancibia A (2014) The environmental legacy of the Ixtoc-I oil spill in Campeche Sound, southwestern Gulf of Mexico. Front Mar Sci 1:1–9

    Article  Google Scholar 

  • Stump SM, Chesson P (2017) How optimally foraging predators promotes prey coexistence in a variable environment. Theor Popul Biol 114:40–58. https://doi.org/10.1016/j.tpb.2016.12.003

    Article  PubMed  Google Scholar 

  • Trimborn S, Hoppe CJM, Taylor BB et al (2015) Physiological characteristics of open ocean and coastal phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep Res Part I 98:115–124. https://doi.org/10.1016/j.dsr.2014.12.010

    Article  CAS  Google Scholar 

  • Ulanowicz RE (1989) Growth and development: ecosystems phenomenology. Universe, Lincon

    Google Scholar 

  • Ulanowicz RE, Puccia CJ (1990) Mixed trophic impacts in ecosystems. COENOSES 5(1):7–16

    Google Scholar 

  • Vega-Cendejas ME, Arreguín-Sanchez F (2001) Energy fluxes in a mangrove ecosystem from a coastal lagoon in Yucatan Peninsula. Mexico Ecol Modell 137(2–3):119–133

    Article  Google Scholar 

  • Vega-Cendejas ME, Hernández de Santillana MH (2019) Demersal fish assemblages and their diversity on the Yucatan continental shelf: Gulf of Mexico. Reg Stud Mar Sci 29:100640. https://doi.org/10.1016/j.rsma.2019.100640

    Article  Google Scholar 

  • Vega-Cendejas ME, Arreguín-Sánchez F, Hernandez de Santillana M (1993) Trophic fluxes on the Campeche Bank, México. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystems. ICLARM Conference Proceedings, Manila, pp 206–213

    Google Scholar 

  • Vega-Cendejas ME, Hernández De Santillana M, Arreguín-Sánchez F (1994) Trophic interrelations in a beach seine fishery from the northwest coast of the Yucatan peninsula, México. J Fish Biol 44:647–659

    Article  Google Scholar 

  • Vidal L, Pauly D (2005) Integration of subsystems models as a tool toward describing feeding interactions and fisheries impacts in a large marine ecosystem, the Gulf of Mexico. Ocean Coast Manag 47:709–725

    Article  Google Scholar 

  • Vilas D, Coll M, Corrales X et al (2020) The effects of marine protected areas on ecosystem recovery and fisheries using a comparative modelling approach. Aquat Conserv Mar Freshw Ecosyst. https://doi.org/10.1002/aqc.3368

    Article  Google Scholar 

  • Yáñez-Arancibia A, Day JW, Reyes E (2013) Understanding the coastal ecosystem-based management approach in the Gulf of Mexico. J Coast Res 63:244–262. https://doi.org/10.2112/SI63-018.1

    Article  Google Scholar 

  • Zetina-Rejón MJ, Arreguín-Sánchez F, Chávez EA (2004) Exploration of harvesting strategies for the management of a Mexican coastal lagoon fishery. Ecol Model 172(2–4):361–372

    Article  Google Scholar 

  • Zetina-Rejón MJ, Cabrera-Neri E, López-Ibarra GA, Arcos-Huitrón NE, Christensen V (2015) Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: a network and modularity analysis. Ecol Model 313:314–324. https://doi.org/10.1016/j.ecolmodel.2015.07.001

    Article  Google Scholar 

  • Zhang Y, Chen Y (2007) Modeling and evaluating ecosystem in 1980s and 1990s for American lobster (Homarus americanus) in the Gulf of Maine. Ecol Model 203(3–4):475–489

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Mexican National Council for Science and Technology—Mexican Ministry of Energy—Hydrocarbon Fund, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM). We acknowledge PEMEX’s specific request to the Hydrocarbon Fund to address the environmental effects of oil spills in the Gulf of Mexico. We are very thankful to Mirella Hernández de Santillana for the processing of the sample and to the staff of the Taxonomy and Ecology laboratory from Centro de Investigación y de Estudios Avanzados del IPN, Unidad Merida.

Funding

This research was funded by the National Council of Science and Technology of Mexico - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study conception and design. Data curation, formal analysis, and methodology and software was performed by Ariel Adriano Chi Espinola. Funding acquisition, project administration, resources and supervision by Maria Eugenia Vega Cendejas. Investigation, validation, visualization by Ariel Adriano Chi Espinola and Maria Eugenia Vega Cendejas. The first draft of the manuscript was written by Ariel Adriano Chi Espinola and both authors contribute writing the review, editions of the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to María Eugenia Vega-Cendejas.

Ethics declarations

Conflict of interest

The authors Ariel Adriano Chi Espínola and María Eugenia Vega Cendejas declare that they have no relevant financial or non-financial interests to disclose. The study here presented has not been published previously in any form and is not under consideration for publication elsehere. When the study get accepted for publication, will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Ethical approval

The corresponding fishing permit was obtained (No. PPF/DGOPA-070/16), using a shrimp trawl net. All specimens collected were frozen at -5ºC to avoid suffering, avoiding the use of alcohol or formaldehyde.

Ethical statement

We declare in this study that all applicable international, national and/or institutional guidelines for sampling, care and experimental use of organisms for the study have been followed. Approval was obtained by the Fishery permit No. PPF / DGOPA-070/15 by the Secretary of Agriculture, Livestock, Rural development, Fisheries and food. National Aquaculture and Fisheries Commission. Mexican United States (Date April 26, 2016).

Consent to participate

All authors actively participated in the development of the present manuscript. These activities include fish collections and their identification, elaboration of databases, use of software, analysis, and writing.

Consent to publication

All authors agree with the information presented in the manuscript.

Additional information

Responsible Editor: C. Harrod.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi-Espínola, A.A., Vega-Cendejas, M.E. Trophic dynamics and properties of the marine ecosystem of Campeche Bank, Mexico. Mar Biol 169, 14 (2022). https://doi.org/10.1007/s00227-021-03999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03999-5

Keywords

Navigation