Skip to main content

Advertisement

Log in

High biomass and productivity of epifaunal invertebrates living amongst dead coral

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Climate change is transforming coral reef structures, with important yet largely unknown consequences for reef food webs. Crustaceans, molluscs, polychaetes, and other small motile invertebrates living as epifauna on coral habitats represent an essential trophic link between primary producers and a diverse and abundant invertivorous fish fauna. Here, we investigate variation in assemblages of motile epifaunal invertebrates on live coral and dead coral heavily overgrown by turf algae. Sampling was conducted 2–3 years following mass bleaching within the study region at four locations broadly spanning the distribution of corals on the eastern seaboard of Australia—along the northern and central Great Barrier Reef, and, adjacent to the central east coast, the Solitary Islands and offshore Elizabeth and Middleton Reefs (> 2000 km total distance). Epifaunal assemblages differed significantly between live and dead ‘turf-covered’ coral habitats, with overall density, biomass, and productivity of epifauna more than an order of magnitude greater on dead than on live coral. The size structure and composition of assemblages also differed: turf-covered dead coral supported greater abundances of small animals than live coral, notably harpacticoid copepods, while live coral assemblages had proportionally greater abundances of larger decapods. A ten-fold increase in secondary productivity of motile invertebrates is predicted as live corals are replaced by turf-covered dead coral, however, this productivity will predominantly be available as small harpacticoid copepod prey (size range: 0.125–0.25 mm). Associated flow-on effects through reef food webs are likely, as changes to epifauna will directly affect invertivore communities, which in turn potentially influence larger carnivores and other functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  • Abele LG, Patton WK (1976) The size of coral heads and the community biology of associated decapod crustaceans. J Biogeogr 3(1):35–47

    Article  Google Scholar 

  • Althaus F, Hill N, Ferrari R, Edwards L, Przeslawski R, Schonberg CHL, Stuart-Smith R, Barrett N, Edgar G, Colquhoun J, Tran M, Jordan A, Rees T, Gowett-Holmes K (2015) A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0141039

    Article  CAS  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2017) Permutational multivariate analysis of variance (PERMANOVA). In: Balakrishnan N, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds) Statistics Reference Online, Wiley StatsRef

  • IPCC (2019) IPCC special report on the ocean and cryosphere in a changing climate. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM(eds). In press

  • Cheal AJ, Macneil MA, Emslie MJ, Sweatman H (2017) The threat to coral reefs from more intense cyclones under climate change. Global Change Biol 23:1511–1524. https://doi.org/10.1111/gcb.13593

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke K, Gorley R (2015) PRIMER version 7: user manual/tutorial. PRIMER-E 192

  • Counsell CWW, Donahue MJ, Edwards KF, Franklin EC, Hixon MA (2018) Variation in coral-associated cryptofaunal communities across spatial scales and environmental gradients. Coral Reefs 37:827–840. https://doi.org/10.1007/s00338-018-1709-7

    Article  Google Scholar 

  • Cresswell AK, Edgar GJ, Stuart-Smith RD, Thomson RJ, Barrett NS, Johnson CR (2017) Translating local benthic community structure to national biogenic reef habitat types. Global Ecol Biogeogr 26:1112–1125. https://doi.org/10.1111/geb.12620

    Article  Google Scholar 

  • Edgar GJ (1983) The ecology of south-east Tasmanian phytal animal communities. I. Spatial organization on a local scale. J Exp Mar Biol Ecol 70:129–157

    Article  Google Scholar 

  • Edgar GJ (1990a) The influence of plant structure on the species richness, biomass and secondary production of macrofaunal assemblages associated with Western Australian seagrass beds. J Exp Mar Biol Ecol 137:215–240

    Article  Google Scholar 

  • Edgar GJ (1990b) The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. J Exp Mar Biol Ecol 137:195–214. https://doi.org/10.1016/0022-0981(90)90185-F

    Article  Google Scholar 

  • Edgar GJ (1993) Measurement of the carrying capacity of benthic habitats using a metabolic-rate based index. Oecologia 95:115–121

    Article  CAS  PubMed  Google Scholar 

  • Edgar GJ, Aoki M (1993) Resource limitation and fish predation: their importance to mobile epifauna associated with Japanese Sargassum. Oecologia 95:122–133

    Article  CAS  PubMed  Google Scholar 

  • Edgar GJ, Moore PG (1986) Macro-algae as habitats for motile macrofauna. Monogr Biol 4:255–277

    Google Scholar 

  • Edgar GJ, Shaw C, Watson GF, Hammond LS (1994) Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. J Exp Mar Biol Ecol 176:201–226

    Article  Google Scholar 

  • Edwards AM, Robinson JPW, Plank MJ, Baum JK, Blanchard JL (2017) Testing and recommending methods for fitting size spectra to data. Methods Ecol Evol 8:57–67. https://doi.org/10.1111/2041-210x.12641

    Article  Google Scholar 

  • Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722. https://doi.org/10.1007/s00227-011-1848-7

    Article  Google Scholar 

  • Enochs I, Hockensmith G (2008) Effects of coral mortality on the community composition of cryptic metazoans associated with Pocillopora damicornis. In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale, Florida, pp 1368–1372

  • Enochs IC, Manzello DP (2012) Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4:94–104. https://doi.org/10.3390/d4010094

    Article  Google Scholar 

  • Enochs I, Toth L, Brandtneris V, Afflerbach J, Manzello D (2011) Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar Ecol Prog Ser 438:105–118. https://doi.org/10.3354/meps09259

    Article  Google Scholar 

  • Fraser KM, Lefcheck JS, Ling SD, Mellin C, Stuart-Smith RD, Edgar GJ (2020a) Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc R Soc B 287:20201798. https://doi.org/10.1098/rspb.2020.1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser KM, Stuart-Smith RD, Ling SD, Edgar GJ (2020b) Small invertebrate consumers produce consistent size spectra across reef habitats and climatic zones. Oikos. https://doi.org/10.1111/oik.07652

    Article  Google Scholar 

  • Fraser KM, Stuart-Smith RD, Ling SD, Heather FJ, Edgar GJ (2020c) Taxonomic composition of mobile epifaunal invertebrate assemblages on diverse benthic microhabitats from temperate to tropical reefs. Mar Ecol Prog Ser 640:31–43. https://doi.org/10.3354/meps13295

    Article  Google Scholar 

  • Galil BS (1987) The adaptive functional structure of mucus-gathering setae in trapezid crabs symbiotic with corals. Symbiosis 4:75–86

    Google Scholar 

  • Glynn PW (2011) In tandem reef coral and cryptic metazoan declines and extinctions. Bull Mar Sci 87:767–794

    Article  Google Scholar 

  • Glynn PW, Enochs IC (2011) Invertebrates and their roles in coral reef ecosystems. In: Coral reefs: an ecosystem in transition, Springer, pp 273–325

  • Gochfeld D (2004) Predation-induced morphological and behavioral defenses in a hard coral: implications for foraging behavior of coral-feeding butterflyfishes. Mar Ecol Prog Ser 267:145–158. https://doi.org/10.3354/meps267145

    Article  Google Scholar 

  • González-Gómez R, Briones-Fourzán P, Álvarez-Filip L, Lozano-Álvarez E (2018) Diversity and abundance of conspicuous macrocrustaceans on coral reefs differing in level of degradation. PeerJ 6:e4922

    Article  PubMed  PubMed Central  Google Scholar 

  • Goreau TF, Yonge CM, Goreau NI (1971) Reef corals—autotrophs or heterotrophs? Biol Bull 141:247–260. https://doi.org/10.2307/1540115

    Article  Google Scholar 

  • Hixon MA, Jones GP (2005) Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 86:2847–2859

    Article  Google Scholar 

  • Houlbréque F, Ferrier-Pagés C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17. https://doi.org/10.1111/j.1469-185x.2008.00058.x

    Article  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, Kleypas J, Van De Leemput IA, Lough JM, Morrison TH (2017a) Coral reefs in the Anthropocene. Nature 546:82

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017b) Global warming and recurrent mass bleaching of corals. Nature 543:373. https://doi.org/10.1038/nature21707

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Sampayo EM, Sommer B, Sims CA, Gomez-Cabrera MdC, Dalton SJ, Beger M, Malcolm HA, Ferrari R, Fraser N, Figueira WF, Smith SDA, Heron SF, Baird AH, Byrne M, Eakin CM, Edgar R, Hughes TP, Kyriacou N, Liu G, Matis P, A., Skirving WJ, Pandolfi JM, (2019) Refugia under threat: mass bleaching of coral assemblages in high-latitude eastern Australia. Global Change Biol 25:3918–3931

    Article  Google Scholar 

  • Klumpp D, McKinnon A, Mundy C (1988) Motile cryptofauna of a coral reef: abundance, distribution and trophic potential. Mar Ecol Prog Ser 45:95–108

    Article  Google Scholar 

  • Kobluk DR, Lysenko MA (1987) Impact of two sequential Pacific hurricanes on sub-rubble cryptic corals: the possible role of cryptic organisms in maintenance of coral reef communities. J Paleontol 61(4):663–675

    Article  Google Scholar 

  • Kolasinski J, Nahon S, Rogers K, Chauvin A, Bigot L, Frouin P (2016) Stable isotopes reveal spatial variability in the trophic structure of a macro-benthic invertebrate community in a tropical coral reef. Rapid Commun Mass Spectrom 30:433–446

    Article  CAS  PubMed  Google Scholar 

  • Kramer MJ, Bellwood O, Bellwood DR (2013) The trophic importance of algal turfs for coral reef fishes: the crustacean link. Coral Reefs 32:575–583. https://doi.org/10.1007/s00338-013-1009-1

    Article  Google Scholar 

  • Kramer MJ, Bellwood DR, Bellwood O (2014) Benthic Crustacea on coral reefs: a quantitative survey. Mar Ecol Prog Ser 511:105–116

    Article  Google Scholar 

  • Kramer MJ, Bellwood O, Fulton CJ, Bellwood DR (2015) Refining the invertivore: diversity and specialisation in fish predation on coral reef crustaceans. Mar Biol 162:1779–1786. https://doi.org/10.1007/s00227-015-2710-0

    Article  CAS  Google Scholar 

  • Kramer MJ, Bellwood DR, Taylor RB, Bellwood O (2017) Benthic Crustacea from tropical and temperate reef locations: differences in assemblages and their relationship with habitat structure. Coral Reefs 36:971–980. https://doi.org/10.1007/s00338-017-1588-3

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Moran DP, Reaka ML (1988) Bioerosion and availability of shelter for benthic reef organisms. Mar Ecol Prog Ser 44:249–263

    Article  Google Scholar 

  • Nash KL, Graham NAJ, Wilson SK, Bellwood DR (2013) Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16:478–490. https://doi.org/10.1007/s10021-012-9625-0

    Article  Google Scholar 

  • Nelson HR, Kuempel CD, Altieri AH (2016) The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 7:e01399

    Google Scholar 

  • O’Brien J, Scheibling R (2018) Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar Ecol Prog Ser 590:1–17. https://doi.org/10.3354/meps12530

    Article  Google Scholar 

  • Plaisance L, Caley MJ, Brainard RE, Knowlton N (2011) The diversity of coral reefs: what are we missing? PLoS ONE 6:7. https://doi.org/10.1371/journal.pone.0025026

    Article  CAS  Google Scholar 

  • Poore AG, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922

    Article  PubMed  Google Scholar 

  • Preston NP, Doherty PJ (1994) Cross-shelf patterns in the community structure of coral-dwelling Crustacea in the central region of the Great Barrier Reef. II Cryptofauna Mar Ecol Prog Ser 104:27–27

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rogers A, Blanchard Julia L, Mumby Peter J (2014) Vulnerability of coral reef risheries to a loss of structural complexity. Curr Biol 24:1000–1005. https://doi.org/10.1016/j.cub.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2018a) Fisheries productivity under progressive coral reef degradation. J Appl Ecol 50:1041–1049. https://doi.org/10.1111/1365-2664.13051

    Article  Google Scholar 

  • Rogers A, Blanchard JL, Newman SP, Dryden CS, Mumby PJ (2018b) High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation. Ecology 99:450–463

    Article  PubMed  Google Scholar 

  • Sheldon R, Prakash A, Sutcliffe W Jr (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340

    Article  Google Scholar 

  • Sprules WG, Barth LE (2016) Surfing the biomass size spectrum: some remarks on history, theory, and application. Can J Fish Aquat Sci 73:477–495. https://doi.org/10.1139/cjfas-2015-0115

    Article  Google Scholar 

  • Stella JS, Jones GP, Pratchett MS (2010) Variation in the structure of epifaunal invertebrate assemblages among coral hosts. Coral Reefs 29:957–973. https://doi.org/10.1007/s00338-010-0648-8

    Article  Google Scholar 

  • Stella JS, Munday PL, Jones GP (2011) Effects of coral bleaching on the obligate coral-dwelling crab Trapezia cymodoce. Coral Reefs 30:719–727. https://doi.org/10.1007/s00338-011-0748-0

    Article  Google Scholar 

  • Stella J, Munday P, Walker S, Pratchett M, Jones G (2014) From cooperation to combat: adverse effect of thermal stress in a symbiotic coral-crustacean community. Oecologia 174:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ (2018) Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560:92–96. https://doi.org/10.1038/s41586-018-0359-9

    Article  CAS  PubMed  Google Scholar 

  • Taylor RB (1998) Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates. Mar Ecol Prog Ser 172:37–51

    Article  Google Scholar 

  • Trebilco R, Dulvy NK, Stewart H, Salomon AK (2015) The role of habitat complexity in shaping the size structure of a temperate reef fish community. Mar Ecol Prog Ser 532:197–211. https://doi.org/10.3354/meps11330

    Article  Google Scholar 

  • White EP, Ernest SM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330

    Article  PubMed  Google Scholar 

  • Wickam H, Averick M, Bryan J, Chang W, D'Agostino McGowan L, Francois R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Lin Pedersen T, Miller E, Milton Bache S, Muller K, Ooms J, Robinson D, Seidel P, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the tidyverse. J Open Source Softw 4:1986. https://doi.org/10.21105/joss.01686

  • Williams DM, Hatcher AI (1983) Structure of fish communities on the outer slopes of inshore, midshelf and outershelf reefs of the Great Barrier Reef. Mar Ecol Prog Ser 10:239–250

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Australian Research Council grants to GJE and SDL, and an Australian Postgraduate Award to KMF. Fieldwork was additionally supported by Parks Australia and the Australian Museum’s Lizard Island Research Station. Epifaunal invertebrates were collected under the following marine park-specific permits: the Great Barrier Reef Marine Park—permit G18/40857.1; the Elizabeth and Middleton Reefs Marine National Nature Reserve—permit CMR-18-000547; the Solitary Islands Marine Park—permits P17/0060-1.0 & OUT17/38264.

Funding

This research was funded by Australian Research Council grants: LP100200122 (GJE), and DP170104668 (GJE, SDL).

Author information

Authors and Affiliations

Authors

Contributions

KMF conducted fieldwork, processed samples, analysed data, and wrote the manuscript. GJE conceived the project and assisted sample identification. GJE and SDL received funding support and assisted with fieldwork and sample processing. All authors contributed to methodology and edited the manuscript.

Corresponding author

Correspondence to Kate M. Fraser.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Animal ethics approval was not required for the research presented here, as the taxa studied were exempt from Australian animal ethics standards at the time of publication.

Additional information

Responsible Editor: C. Wild.

Reviewers: undisclosed experts.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, K.M., Stuart-Smith, R.D., Ling, S.D. et al. High biomass and productivity of epifaunal invertebrates living amongst dead coral. Mar Biol 168, 102 (2021). https://doi.org/10.1007/s00227-021-03911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03911-1

Navigation