Skip to main content

Advertisement

Log in

Phylogenetic constraint and phenotypic plasticity in the shell microstructure of vent and seep pectinodontid limpets

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Pectinodontid limpets of the genus Bathyacmaea are endemic to hot vents and cold seeps and exhibit greatly variable shell and radular macro-morphologies, rendering reliable species-level identification challenging. Here, we analyzed shell microstructures of western Pacific vent/seep Bathyacmaea limpets using scanning electron microscopy and Raman spectrophotometry to test its usefulness in providing phylogenetic signals. Bathyacmaea shells comprised of two forms of calcitic microstructure including irregular spherulitic prismatic type-A (ISP type-A) and semi-foliated (SF), as well as the aragonitic crossed lamellar (CL) microstructure. Despite marked differences in macroscopic shell morphologies once leading them to be classified into different species or even genera, six morphotypes of Bathyacmaea nipponica from different chemosynthetic localities and substrates shared an outermost ISP-A layer and alternating layers of SF and CL structures in their outer and inner shell layers. A genetically divergent lineage recovered from the South Chamorro Seamount, however, differed in having a simple three-layered shell composition consisting of ISP-A, SF, and CL structures, in that order, from the outside, and an unusually thin inner shell layer consisting of only CL structure. Moreover, the ratio of aragonite and calcite varied with habitat conditions, with calcite dominating in vents and aragonite dominating in seeps. These results suggest that the shell microstructure of pectinodontids is under phylogenetic constraints and provides useful taxonomic signals, while the mineral polymorphism in aragonite/calcite ratio varies according to environmental factors. Furthermore, microstructures of two ‘species’ from Cretaceous seeps confirmed the same patterns in fossil lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the NCBI GenBank repository, with accession numbers MN631154-MN631157, MN634249-MN634250, MN658524, MN688133, MN715828-MN715829, MT275737-MT275738, and MT309592-309593. Specimens used in the present study are deposited in the Department of Historical Geology and Paleontology in the University Museum, the University of Tokyo.

References

  • Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim Cosmochim Acta 39:489–504. https://doi.org/10.1016/0016-7037(75)90102-7

    Article  CAS  Google Scholar 

  • Bøggild OB (1930) The shell structure of the Mollusks. Det K Danske Vidensk Selsk Skr Naturvidenskabelig Math Afd Ser. 2:231–326

    Google Scholar 

  • Carter JG (1980a) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 69–113

    Chapter  Google Scholar 

  • Carter JG (1980b) Guide to bivalve shell microstructures. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 645–673

    Google Scholar 

  • Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends, vol I. Van Nostrand & Reinhold, New York

    Google Scholar 

  • Carter JG, Barrera E, Tevesz MJS (1998) Thermal potentiation and mineralogical evolution in the Bivalvia (Mollusca). J Paleontol 72:991–1010. https://doi.org/10.1017/S0022336000027359

    Article  Google Scholar 

  • Carter JG, Harries PJ, Malchus N, Sartori AF, Anderson LC, Bieler R, Bogan AE, Coan EV, Cope JCW, Cragg SM, García-March JR, Hylleberg J, Patricia K, Karl K, Jiří K, Christopher M, Mikkelsen PM, Pojeta JJ, Tëmkin I, Yancey T, Alexandra Z (2012) Illustrated glossary of the Bivalvia. Treatise Online 1:1–209

    Google Scholar 

  • Checa AG, Ramírez-Rico J, González-Segura A, Sánchez-Navas A (2009) Nacre and false nacre (foliated aragonite) in extant monoplacophorans (= Tryblidiida: mollusca). Naturwissenschaften 96:111. https://doi.org/10.1007/s00114-008-0461-1

    Article  CAS  Google Scholar 

  • Chen C, Ogura T, Hirayama H, Watanabe HK, Miyazaki J, Okutani T (2016) First seep-dwelling Desbruyeresia (Gastropoda: abyssochrysoidea) species discovered from a serpentinite-hosted seep in the Southeastern Mariana Forearc. Molluscan Res 36:277–284. https://doi.org/10.1080/13235818.2016.1172547

    Article  Google Scholar 

  • Chen C, Watanabe HK, Nagai Y, Toyofuku T, Xu T, Sun J, Qiu J, Sasaki T, Chen C (2019) Complex factors shape phenotypic variation in deep-sea limpets. Biol Lett. https://doi.org/10.1098/rsbl.2019.0504

    Article  Google Scholar 

  • Davis KJ, Dove PM, De Yoreo JJ (2000) The role of Mg2+ as an impurity in calcite growth. Science 290:1134–1137. https://doi.org/10.1126/science.290.5494.1134

    Article  CAS  Google Scholar 

  • Frenzel M, Harper EM (2011) Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774). J Struct Biol 174:321–332. https://doi.org/10.1016/j.jsb.2011.02.002

    Article  CAS  Google Scholar 

  • Fryer P, Wheat CG, Williams T, Albers E, Bekins B, Debret BPR, Deng J, Dong Y, Eickenbusch P, Frery EA, Ichiyama Y, Johnson K, Johnston RM, Kevorkian RT, Kurz W, Magalhaes V, Mantovanelli SS, Menapace W, Menzies CD, Michibayashi K, Moyer CL, Mullane KK, Park J-W, Price RE, Ryan JG, Shervais JW, Sissmann OJ, Suzuki S, Takai K, Walter B, Zhang R (2018) Proceedings of the international ocean discovery program, volume 366, Mariana convergent margin and south chamorro seamount. Proc Int Ocean Discov Progr. https://doi.org/10.14379/iodp.proc.366.2018

    Article  Google Scholar 

  • Fuchigami T, Sasaki T (2005) The shell structure of the Recent Patellogastropoda (mollusca: gastropoda). Paleontol Res 9:143–168. https://doi.org/10.2517/prpsj.9.143

    Article  Google Scholar 

  • Fujikura K, Okutani K, Maruyama T (2008) Deep-sea life—biological observations using research submersibles. Tokai University Press, Kanagawa (in Japanese)

    Google Scholar 

  • Füllenbach CS, Schöne BR, Branscheid R (2014) Microstructures in shells of the freshwater gastropod Viviparus viviparus: a potential sensor for temperature change? Acta Biomater 10:3911–3921. https://doi.org/10.1016/j.actbio.2014.03.030

    Article  Google Scholar 

  • Gamo T, Ishibashi J, Tsunogai U, Okamura K, Chiba H (2006) Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the western Pacific. In: Back-arc spreading systems: geological, biological, chemical, and physical interactions. Wiley, pp 147–161. https://doi.org/10.1029/166gm08

  • Giribet G, Okusu A, Lindgren AR, Huff SW, Schrödl M, Nishiguchi MK (2006) Evidence for a clade composed of molluscs withserially repeated structures: Monoplacophoransare related to chitons. Proc Natl Acad Sci U S A 103:7723–7728. https://doi.org/10.1073/pnas.0602578103

    Article  CAS  Google Scholar 

  • Harper EM (1998) Calcite in chamid bivalves. J Molluscan Stud 64:391–399. https://doi.org/10.1093/mollus/64.3.391

    Article  Google Scholar 

  • Hikida Y, Suzuki S, Togo Y, Ijiri A (2003) An exceptionally well-preserved fossil seep community from the cretaceous yezo group in the Nakagawa area, Hokkaido, northern Japan. Paleontol Res 7:329–342. https://doi.org/10.2517/prpsj.7.329

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Hikida Y (2007) Antiquity of the substrate choice among acmaeid limpets from Late Cretaceous chemosynthesis-based communities. Acta Palaeontol Pol 52:369–373

    Google Scholar 

  • Joubert C, Linard C, Le Moullac G, Soyez C, Saulnier D, Teaniniuraitemoana V, Ky CL, Gueguen Y (2014) Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PLoS ONE 9:1–9. https://doi.org/10.1371/journal.pone.0103944

    Article  CAS  Google Scholar 

  • Kaim A, Jenkins RG, Hikida Y (2009) Gastropods from late cretaceous omagari and yasukawa hydrocarbon seep deposits in the Nakagawa area, Hokkaido, Japan. Acta Palaeontol Pol 54:463–490. https://doi.org/10.4202/app.2009.0042

    Article  Google Scholar 

  • Kennish M (1980) Shell microgrowth analysis Mercenaria mercenaria as a type example for research in population dynamics. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms: Biological records of environmental change. Plenum Press, New York, pp 255–294

    Chapter  Google Scholar 

  • Kiel S (2010) The vent and seep biota: aspects from microbes to ecosystems. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Kontoyannis CG, Vagenas NV (2000) Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125:251–255. https://doi.org/10.1039/a908609i

    Article  CAS  Google Scholar 

  • Kurihara T, Shikatani M, Nakayama K, Nishida M (2006) Proximate mechanisms causing morphological variation in a turban snail among different shores. Zool Sci 23:999–1008. https://doi.org/10.2108/zsj.23.999

    Article  CAS  Google Scholar 

  • Lafuente B, Downs R, Yang H, Stone N (2016) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. Walter de Gruyter, Berlin, pp 1–29

    Google Scholar 

  • Lindberg DR, Pearse JS (1990) Experimental manipulation of shell color and morphology of the limpets Lottia asmi (Middendorff) and Lottia digitalis (Rathke) (Mollusca: patellogastropoda). J Exp Mar Bio Ecol 140:173–185. https://doi.org/10.1016/0022-0981(90)90125-V

    Article  Google Scholar 

  • Lutz RA, Clark GR (1984) Seasonal and geographic variation in the shell microstructure of a salt-marsh bivalve (Geukensia demissa (Dillwyn)). J Mar Res 42:943–956. https://doi.org/10.1357/002224084788520684

    Article  Google Scholar 

  • MacClintock C (1967) Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Peabody Museum Nat Hist Yale Univ Bull 22:1–140

    Google Scholar 

  • Martín-Mora E, James FC, Stoner AW (1995) Developmental plasticity in the shell of the queen conch Strombus gigas. Ecology 76:981–994

    Article  Google Scholar 

  • Masuzawa T, Handa N, Kitagawa H, Kusakabe M (1992) Sulfate reduction using methane in sediments beneath a bathyal “cold seep” giant clam community off Hatsushima Island, Sagami Bay, Japan. Earth Planet Sci Lett 110:39–50. https://doi.org/10.1016/0012-821X(92)90037-V

    Article  CAS  Google Scholar 

  • Nakano T, Ozawa T (2007) Worldwide phylogeography of the order Patellogastropoda: molecular, morphological and paleontological evidence. J Molluscan Stud 73:79–99. https://doi.org/10.1093/mollus/eym001

    Article  Google Scholar 

  • Nakano T, Sasaki T (2011) Recent advances in molecular phylogeny, systematics and evolution of patellogastropod limpets. J Molluscan Stud 77:203–217. https://doi.org/10.1093/mollus/eyr016

    Article  Google Scholar 

  • Nishida K, Ishimura T, Suzuki A, Sasaki T (2012) Seasonal changes in the shell microstructure of the bloody clam, Scapharca broughtonii (Mollusca: bivalvia: Arcidae). Palaeogeogr Palaeoclimatol Palaeoecol 363–364:99–108. https://doi.org/10.1016/j.palaeo.2012.08.017

    Article  Google Scholar 

  • Nishida K, Suzuki A, Isono R, Hayashi M, Watanabe Y, Yamamoto Y, Irie T, Nojiri Y, Mori C, Sato M, Sato K, Sasaki T (2015) Thermal dependency of shell growth, microstructure, and stable isotopes in laboratory-reared Scapharca broughtonii (Mollusca: bivalvia). Geochem Geophys Geosystems 16:2395–2408. https://doi.org/10.1002/2014GC005634

    Article  Google Scholar 

  • Okutani T, Tsuchida E, Fujikura K (1992) Five bathyal gastrtopods living within or near the Calyptogena-community of the Hatsushima Islet, Sagami Bay. Venus 51:137–148

    Google Scholar 

  • Okutani T, Fujikura K, Sasaki T (1993) New taxa and new destribution records of deepsea gastopods collected from or near the chemosynthetic communities in the Japanese waters. Bull Natl Sci Museum, Tokyo, Ser A 19:123–143

    Google Scholar 

  • Ries JB (2010) Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7:2795–2849. https://doi.org/10.5194/bg-7-2795-2010

    Article  CAS  Google Scholar 

  • Saether KP, Little CTS, Marshall BA, Campbell KA (2012) Systematics and palaeoecology of a new fossil limpet (Patellogastropoda: pectinodontidae) from Miocene hydrocarbon seep deposits, East Coast Basin, North Island, New Zealand with an overview of known fossil seep pectinodontids. Molluscan Res 32:1–15

    Google Scholar 

  • Sasaki T, Okutani T, Fujikura K (2003) New taxa and new records of patelliform gastropods associated with chemoautosynthesis-based communities in Japanese waters. Veliger 46:189–210

    Google Scholar 

  • Sasaki T, Okutani T, Fujikura K (2005) Molluscs from hydrothermal vents and cold seeps in Japan: a review of taxa recorded in twenty recent years (1984–2004). Venus 64:87–133

    Google Scholar 

  • Sasaki T, Ujikura K, Okutani T (2007) Molluscs collected in the cruise NT06-04 of R/V Natsushima from methane-seeps off Hatsushima Island, Sagami Bay, Japan. Chiribotan 37:197–207

    Google Scholar 

  • Sato K, Sasaki T (2015) Shell microstructure of Protobranchia (Mollusca: bivalvia): Diversity, new microstructures and systematic implications. Malacologia 59:45–103. https://doi.org/10.4002/040.059.0106

    Article  CAS  Google Scholar 

  • Sato K, Nakashima R, Majima R, Watanabe H, Sasaki T (2013) Shell microstructures of five recent solemyids from Japan (Mollusca: bivalvia). Paleontol Res 17:69–90. https://doi.org/10.2517/1342-8144-17.1.69

    Article  Google Scholar 

  • Shimamoto M (1986) Shell microstructure of the Veneridae (Bivalvia) and its phylogenetic implications. Sci reports Tohoku Univ Second Ser Geol 56:1–A40

    Google Scholar 

  • Spann N, Harper EM, Aldridge DC (2010) The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 97:743–751. https://doi.org/10.1007/s00114-010-0692-9

    Article  CAS  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390. https://doi.org/10.1126/science.1173793

    Article  CAS  Google Scholar 

  • Takeuchi T, Sarashina I, Iijima M, Endo K (2008) In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Lett 582:591. https://doi.org/10.1016/j.febslet.2008.01.026

    Article  CAS  Google Scholar 

  • Taylor JD, Reid DG (1990) Shell microstructure and mineralogy of the littorinidae: ecological and evolutionary significance. Hydrobiologia 193:199–215. https://doi.org/10.1007/BF00028077

    Article  Google Scholar 

  • Taylor JD, Kennedy WJ, Hall A (1969) The shell structure and mineralogy of the Bivalvia. Introduction, Nuculacea-Trigonacea. Bull Br Museum (Natural Hist Zool 3:1–125

  • Taylor J., Kennedy WJ, Hall A (1973) The shell structure and mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea. Conclusions. Bull Br Museum (Natural Hist Zool 22:253–294

  • Teske PR, Barker NP, McQuaid CD (2007) Lack of genetic differentiation among four sympatric southeast African intertidal limpets (Siphonariidae): phenotypic plasticity in a single species? J Molluscan Stud 73:223–228. https://doi.org/10.1093/mollus/eym012

    Article  Google Scholar 

  • Vendrasco M, Checa A, Heimbrock W, Baumann S (2013) Nacre in molluscs from the ordovician of the midwestern United States. Geosciences 3:1–29. https://doi.org/10.3390/geosciences3010001

    Article  Google Scholar 

  • Warén A, Bouchet P (2001) Gastropoda and monoplacophora from hydrothermal vents and seeps; new taxa and records. Veliger 44:116–231

    Google Scholar 

  • Wheat CG, Fryer P, Fisher AT, Hulme S, Jannasch H, Mottl MJ, Becker K (2008) Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc. Earth Planet Sci Lett 267:401–409. https://doi.org/10.1016/j.epsl.2007.11.057

    Article  CAS  Google Scholar 

  • Yamaguchi K, Seto K, Takayasu K, Aizaki M (2006) Shell layers and structures in the brackish water bivalve, Corbicula japonica. Quat Res 45:317–331. https://doi.org/10.4116/jaqua.45.317

    Article  Google Scholar 

Download references

Acknowledgements

We thank captains and crews of R/Vs NATSUSHIMA, SHINSEI-MARU, JOIDES RESOLUTION, and XIANGYANGHONG 9, as well as pilots of ROVs Hyper-Dolphin and KAIKO, and DSV Jiaolong for their sampling efforts. Cruise principal scientists are gratefully acknowledged: Ken Takai, NT15-13; Akinori Yabuki, KS-16-04; Patricia Fryer, IODP/JOIDES RESOLUTION Expedition 366; Feng Liu/Huaiyang Zhou, Dayang-31. Ryoko Yamazaki (JAMSTEC) assisted in sequencing of pectinodontid limpets. Ting Xu and Jianwen Qiu (Hong Kong Baptist University) and thanked for providing specimens from the South China Sea used in this study. Ken Takai (JAMSTEC) kindly collected pectinodontid limpets from a steel pipe recovered from the South Chamorro Seamount during IODP expedition 366 and provided the specimens to us. Our Raman analysis was technically supported by Tatsuhiko Kawamoto (Shizuoka University). Masaki Takaya (Kyoto University) helped our petrographic investigation. We thank the editor, Dr. Elizabeth M. Harper, and an anonymous reviewer for their constructive criticism and useful suggestions. HKW and CC were supported by a JSPS Grant-in-Aid (18K06401), and RGJ was supported by JSPS Grant-in-Aid (26287131, 15H04412, and 16H05740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for sampling, care, and experimental use of organisms for the study have been followed and all necessary approvals have been obtained.

Additional information

Communicated by A. Checa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by E. Harper and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Watanabe, H.K., Jenkins, R.G. et al. Phylogenetic constraint and phenotypic plasticity in the shell microstructure of vent and seep pectinodontid limpets. Mar Biol 167, 79 (2020). https://doi.org/10.1007/s00227-020-03692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-020-03692-z

Navigation