Skip to main content
Log in

Lipid and fatty acid profiles of gametes and spawned gonads of Arbacia dufresnii (Echinodermata: Echinoidea): sexual differences in the lipids of nutritive phagocytes

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sea urchin gonads contain nutritive phagocytes (NP) that store nutrients such as protein, lipid and carbohydrates for use during the production of gametes. While there is some information on the role of protein, particularly major yolk protein (MYP), during gametogenesis, very little is known about the role of lipids and their component fatty acids. We compared the lipid and FA profile of mature Arbacia dufresnii gonads (intact), with gonads that had been induced to spawn (spawned) and their associated gametes. The total lipid concentration decreased in females from the intact to the spawned gonads, and with a minimum value in the eggs, whilst male intact and spawned gonads had similar lipid concentrations, with significantly lower lipid concentration only in the sperm. Sex was the main factor affecting FA profile in the gonads (intact, spawned) and gametes of A. dufresnii, with differences in both the variety of FA, their total concentration and proportion. Interestingly, sexual differences in FA profile of the gonads are due not only to the presence of mature gametes, but also due to the NP and gametes remaining after spawning. As male and female sea urchins have the same basic gonad wall and NP structure, and the same echinoferrin based system for deposition of the MYP in the NP, our study reveals an unexplored biochemical complexity in the lipids and fatty acids of the NP within sea urchin gonads that has implications for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer_E Ltd, Plymouth

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Böttger SA, Eno CC, Walker CW (2011) Methods for generating triploid green sea urchin embryos: an initial step in producing triploid adults for land-based and near-shore aquaculture. Aquaculture 318:199–206

    Article  Google Scholar 

  • Brogger M, Martinez M, Penchaszadeh P (2010) Reproduction of the sea urchin Arbacia dufresnii (Echinoidea: Arbaciidae) from Golfo Nuevo, Argentina. J Mar Biol Assoc UK 90:1405–1409

    Article  Google Scholar 

  • Brogger M, Gil DG, Rubilar T, Martinez M et al (2013) Echinoderms from Argentina: biodiversity, distribution and current state of knowledge. In: Alvarado JJ, Marin Solís FA (eds) Latin American echinoderms. Springer, Berlin, pp 359–402

    Chapter  Google Scholar 

  • Brooks JM, Wessel GM (2003) Selective transport and packaging of the major yolk protein in the sea urchin. Dev Biol 261:353–370

    Article  CAS  Google Scholar 

  • Byrne M, Prowse TAA, Sewell MA, Dworjanyn S, Williamson JE, Vaïtilingon D (2008) Maternal provisioning for larvae and larval provisioning for juveniles in the toxopneustid sea urchin Tripneustes gratilla. Mar Biol 155:473–482

    Article  Google Scholar 

  • Carboni S, Hughes AD, Atack T, Tocher DR, Migaud H (2013) Fatty acid profiles during gametogenesis in sea urchin (Paracentrotus lividus): effects of dietary inputs on gonad, egg and embryo profiles. Comp Biochem Physiol Part A Mol Integr Physiol 164:376–382

    Article  CAS  Google Scholar 

  • Chelomin VP, Svetashev VI (1978) Lipid composition of subcellular particles of sea urchin eggs Strongylocentrotus intermedius. Comp Biochem Physiol B 60:99–105

    Article  Google Scholar 

  • Chen YC, Chen TY, Chiou TK, Hwang DF (2013) Seasonal variation on general composition, free amino acids and fatty acids in the gonads of Taiwan’s sea urchin Tripneustes gratilla. J Mar Sci Technol TA 21:723–732

    Google Scholar 

  • Christie WW (2018) Mass spectrometry of methyl ester derivatives of fatty acids. http://www.lipidhome.co.uk/ms/methylesters.htm

  • Epherra L, Gil DG, Rubilar T, Perez-Gallo S, Reartes MB, Tolosano JA (2015) Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Mar Freshw Res 66:329–342

    Article  Google Scholar 

  • Greenfield L, Giese AC, Farmanfarmaian A, Boolootian RA (1958) Cyclic biochemical changes in several echinoderms. J Exp Zool 139:507–524

    Article  Google Scholar 

  • Harrington FE, Easton DP (1982) A putative precursor to the major yolk protein of the sea urchin. Dev Biol 94:505–508

    Article  CAS  Google Scholar 

  • Hughes A, Kelly M, Barnes D, Catarino A, Black K (2006) The dual functions of sea urchin gonads are reflected in the temporal variations of their biochemistry. Mar Biol 148:789–798

    Article  Google Scholar 

  • Kalachev AV, Yurchenko OV (2017) Microautophagy in nutritive phagocytes of sea urchins. Protoplasma 254:609–614

    Article  CAS  Google Scholar 

  • Kalogeropoulos N, Mikellidi A, Nomikos T, Chiou A (2012) Screening of macro- and bioactive microconstituents of commercial finfish and sea urchin eggs. LWT Food Sci Technol 46:525–531

    Article  CAS  Google Scholar 

  • Kozhina VP, Terekhova TA, Svetashev VI (1978) Lipid composition of gametes and embryos of the sea urchin Strongylocentrotus intermedius at early stages of development. Dev Biol 62:512–517

    Article  CAS  Google Scholar 

  • Lepage G, Roy C (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    CAS  PubMed  Google Scholar 

  • Liyana-Pathirana C, Shahidi F, Whittick A (2002) The effect of an artificial diet on the biochemical composition of the gonads of the sea urchin Strongylocentrotus droebachiensis. Food Chem 79:461–472

    Article  CAS  Google Scholar 

  • Marsh AG, Powell ML, Watts SA (2013) Biochemical and energy requirements of gonad development. In: Lawrence JM (ed) Sea urchins: biology and ecology, 3rd edn. Academic Press, London, pp 45–57

    Chapter  Google Scholar 

  • Martínez-Pita I, García FJ, Pita ML (2010a) The effect of seasonality on gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata: Echinoidea). J Shellfish Res 29:517–525

    Article  Google Scholar 

  • Martínez-Pita I, García F, Pita ML (2010b) Males and females gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata). Helgol Mar Res 64:135–142

    Article  Google Scholar 

  • Meyer E, Green AJ, Moore M, Manahan DT (2007) Food availability and physiological state of sea urchin larvae (Strongylocentrotus purpuratus). Mar Biol 152:179–191

    Article  Google Scholar 

  • Mita M, Nakamura M (2001) Energy metabolism of sea urchin spermatozoa: the endogenous substrate and ultrastructural correlates. In: Jangoux M, Lawrence JM (eds) Echinoderm Studies 6. Swets and Zeitlinger BV, Lisse, pp 85–110

    Google Scholar 

  • Mita M, Ueta N (1988) Energy metabolism of sea urchin spermatozoa, with phosphatidylcholine as the preferred substrate. Biochim Biophys Acta 959:361–369

    Article  CAS  Google Scholar 

  • Mol S, Baygar T, Varlik C, Tosun ŞY (2008) Seasonal variations in yield, fatty acids, amino acids and proximate compositions of sea urchin (Paracentrotus lividus) roe. J Food Drug Anal 16:68–74

    CAS  Google Scholar 

  • Parra M, Rubilar T, Latorre M, Epherra L, Gil DG, Díaz de Vivar ME (2015) Nutrient allocation in the gonads of the sea urchin Arbacia dufresnii in different stages of gonadal development. Invertebr Reprod Dev 59:26–36

    Article  CAS  Google Scholar 

  • Parrish CC (1999) Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems. Springer, New York, pp 4–20

    Chapter  Google Scholar 

  • Pearse JS, Cameron RA (1991) Echinodermata: Echinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol VI. Echinoderms and lophophorates. The Boxwood Press, California, pp 513–662

    Google Scholar 

  • Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2:278–282

    Article  Google Scholar 

  • Prowse TAA, Sewell MA, Byrne M (2017) Three-stage lipid dynamics during development of planktotrophic echinoderm larvae. Mar Ecol Prog Ser 583:149–161

    Article  CAS  Google Scholar 

  • Raposo AIG, Ferreira SMF, Ramos R, Santos PM, Anjos C, Baptista T, Tecelão C, Costa JL, Pombo A (2019) Effect of three diets on the gametogenic development and fatty acid profile of Paracentrotus lividus (Lamarck, 1816) gonads. Aquac Res. https://doi.org/10.1111/are.14051

    Article  Google Scholar 

  • Sanna R, Siliani S, Melis R, Loi B, Baroli M, Roggio T, Uzzau S, Anedda R (2017) The role of fatty acids and triglycerides in the gonads of Paracentrotus lividus from Sardinia: growth, reproduction and cold acclimatization. Mar Environ Res 130:113–121

    Article  CAS  Google Scholar 

  • Scott LB, Leahy PS, Decker GL, Lennarz WJ (1990) Loss of yolk platelets and yolk glycoproteins during larval development of the sea urchin embryo. Dev Biol 137:368–377

    Article  CAS  Google Scholar 

  • Sewell MA (2005) Utilization of lipids during early development of the echinometrid sea urchin Evechinus chloroticus. Mar Ecol Prog Ser 304:133–142

    Article  CAS  Google Scholar 

  • Sewell MA, Eriksen S, Middleditch MJ (2008) Identification of protein components from the mature ovary of the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). Proteomics 8:2531–2542

    Article  CAS  Google Scholar 

  • Siliani S, Melis R, Loi B, Guala I, Baroli M, Sanna R, Uzzau S, Roggio T, Addis MF, Anedda R (2016) Influence of seasonal and environmental patterns on the lipid content and fatty acid profiles in gonads of the edible sea urchin Paracentrotus lividus from Sardinia. Mar Environ Res 113:124–133

    Article  CAS  Google Scholar 

  • Unuma T, Suzuki T, Kurokawa T, Yamamoto T, Akiyama T (1998) A protein identical to the yolk protein is stored in the testis in male red sea urchin, Pseudocentrotus depressus. Biol Bull 194:92–97

    Article  CAS  Google Scholar 

  • Unuma T, Yamamoto T, Akiyama T, Ohta H (2003) Quantitative changes in yolk protein and other components in the ovary and testis of the sea urchin Pseudocentrotus depressus. J Exp Biol 206:365–372

    Article  CAS  Google Scholar 

  • Unuma T, Sawaguchi S, Yamano K, Ohta H (2011) Accumulation of the major yolk protein and zinc in the agametogenic sea urchin gonad. Biol Bull 221:227–237

    Article  CAS  Google Scholar 

  • Verachia W, Sewell MA, Niven B, Leus M, Barker MF, Bremer PJ (2012) Seasonal changes in the biochemical composition of Evechinus chloroticus gonads (Echinodermata: Echinoidea). NZ J Mar Freshw Res 46:399–410

    Article  CAS  Google Scholar 

  • Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647

    Article  Google Scholar 

  • Walker CW, McGinn NA, Harrington LM, Lesser MP (1998) New perspectives on sea urchin gametogenesis and their relevance to aquaculture. J Shellfish Res 17:1507–1514

    Google Scholar 

  • Walker CW, Unuma T, McGinn NA, Harrington LM, Lesser MP (2001) Reproduction of sea urchins. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Elsevier, Amsterdam, pp 5–26

    Chapter  Google Scholar 

  • Walker CW, Harrington LM, Lesser MP, Fagerberg WR (2005) Nutritive phagocyte incubation chambers provide a structural and nutritive microenvironment for germ cells of Strongylocentrotus droebachiensis, the green sea urchin. Biol Bull 209:31–48

    Article  Google Scholar 

  • Walker CW, Unuma T, Lesser MP (2007) Gametogenesis and reproduction of sea urchins. In: Lawrence JM (ed) Developments in aquaculture and fisheries science. Elsevier, London, pp 11–33

    Google Scholar 

  • Walker CW, Lesser MP, Unuma T (2013) Sea urchin gametogenesis—structural, functional and molecular/genomic biology. In: Lawrence JM (ed) Sea urchins: biology and ecology, 3rd edn. Academic Press, London, pp 25–38

    Chapter  Google Scholar 

  • Walker CW, Böttger SA, Unuma T, Watts SA, Harris LG, Lawrence AL, Eddy SD (2015) Enhancing the commercial quality of edible sea urchin gonads—technologies emphasizing nutritive phagocytes. In: Brown NP, Eddy SD (eds) Echinoderm aquaculture, 1st edn. Wiley, New York, pp 263–286

    Chapter  Google Scholar 

  • Yasumasu I, Hino A, Suzuki A, Mita M (1984) Change in the triglyceride level in sea urchin eggs and embryos during early development. Dev Growth Differ 26:525–532

    Article  CAS  Google Scholar 

  • Yokota Y, Sappington TW (2002) Vitellogen and vitellogenin in echinoderms. In: Raikhel AS, Sappington TW (eds) Reproductive biology of invertebrates, progress in vitellogenesis, vol 12, part A. Science Publishers, Enfield, pp 201–221

    Google Scholar 

  • Zárate EV, Díaz de Vivar M, Avaro M, Epherra L, Sewell MA (2016) Sex and reproductive cycle affect lipid and fatty acid profiles of gonads of Arbacia dufresnii (Echinodermata: Echinoidea). Mar Ecol Prog Ser 551:185–199

    Article  Google Scholar 

Download references

Acknowledgements

We thank the University of Auckland Centre for Genomics, Proteomics and Metabolomics for assistance with the GC–MS analysis, Dr. Manuel Weinkauf for writing BenjaminiHochberg.xlsx, and the anonymous reviewers whose comments have improved the manuscript.

Funding

This study received financial support from Universidad Nacional de la Patagonia San Juan Bosco (PI 822/2010) and the University of Auckland (MAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A. Sewell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animals were collected using a permit provided by the Secretary of Fauna and Flora of Chubut Province, Argentina. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: M. Byrne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz de Vivar, M.E., Zárate, E.V., Rubilar, T. et al. Lipid and fatty acid profiles of gametes and spawned gonads of Arbacia dufresnii (Echinodermata: Echinoidea): sexual differences in the lipids of nutritive phagocytes. Mar Biol 166, 96 (2019). https://doi.org/10.1007/s00227-019-3544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3544-y

Navigation