Skip to main content
Log in

Egg masses and development of Falsilunatia eltanini (Mollusca: Gastropoda): a deep-sea naticid from a Southwestern Atlantic Canyon

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A series of cruises to the Mar del Plata Submarine Canyon (38°S/54°W) off Argentina in 2012–2013 have provided biological material that enables insights into the various modes of development of deep-sea invertebrates at depths up to 3500 m. This study describes the unusually large encapsulated embryos of the globose moon snail, Falsilunatia eltanini Dell, 1990 (Naticidae), and compares them with another direct-developing naticid from the same collections, Bulbus carcellesi. Embryos of F. eltanini develop in sand ribbon egg masses that contain up to 6 conspicuous egg capsules, 5.0–8.5 mm diameter. Each F. eltanini egg capsule contains a single, ~ 170-µm diameter egg and abundant, white, supplementary food. This allows the crawling pre-hatching juveniles to grow to 4.7 mm shell diameter. Different stages of development were found among multiple egg collars collected on the same date, which suggests a long reproductive season that could be continuous or periodic (lasting more than a year). The number of whorls in the hatchling juvenile shells and the significant size they attain confirm the occurrence of a long period of embryonic development. This reproductive strategy requires a large maternal investment in the very large egg capsules and abundant supplementary food. Within Naticidae, this extraordinary modality is only observed in several species inhabiting deep-sea and boreal cold waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amio M (1963) A comparative embryology of marine gastropods, with ecological considerations. J Shimonoseki Univ Fish 12:229–358

    Google Scholar 

  • Ankel W (1930) Nähreierbildung bei Natica catena (da Costa). Zool Anz 89:129–135

    Google Scholar 

  • Baxter R (1987) Mollusks of Alaska, a listing of all mollusks, freshwater, terrestrial, and marine reported from the State of Alaska, with locations of the species types, maximum sizes and marine depths inhabited. Shells and Sea Life, California

    Google Scholar 

  • Berecoechea JJ, Brogger MI, Penchaszadeh PE (2017) New evidence of brooding in the deep-sea brittle star Astrotoma agassizii Lyman, 1876 from a South Western Atlantic Canyon. Deep-Sea Res I 127:105–110. https://doi.org/10.1016/j.dsr.2017.08.007

    Article  Google Scholar 

  • Bouchet P, Warén A (1993) Revision of the Northeast Atlantic bathyal and abyssal Mesogastropoda. Boll Malacol Suppl 3:577–840

    Google Scholar 

  • Brandt A, Brökeland W, Brix S, Malyutina M (2004) Diversity of Southern Ocean deep-sea Isopoda (Crustacea, Malacostraca)—a comparison with shelf data. Deep-Sea Res II 51:1753–1768

    Article  Google Scholar 

  • Childress J, Price M (1978) Growth rate of the bathypelagic crustacean Gnathophausia ingens (Mysidacea: Lophogastridae). I. Dimensional growth and population structure. Mar Biol 50:47–62

    Article  Google Scholar 

  • Clarke A (1992) Reproduction in the cold: thorson revisited. Invertebr Reprod Dev 22:175–184

    Article  Google Scholar 

  • Colman J, Tyler P (1988) Observations on the reproductive biology of the deep-sea trochid Calliotropis ottoi (Philippi). J Molluscan Stud 54:239–242

    Article  Google Scholar 

  • Colman J, Tyler P, Gage J (1986) The reproductive biology of Colus jeffreysianus (Gastropoda: Prosobranchia) from 2200 m in the NE Atlantic. J Molluscan Stud 52:45–54

    Article  Google Scholar 

  • Dell RK (1990) Antarctic Mollusca: with special reference to the fauna of the Ross Sea. Bull R Soc NZ 27:1–311

    Google Scholar 

  • Engl W (2012) Shells of Antarctica. ConchBooks, Hackenheim

    Google Scholar 

  • Fioroni P (1982) Larval organs, larvae, metamorphosis and types of development of Mollusca: a comprehensive review. Zool Jb Abt Anat Ontogenie Tiere 108:375–420

    Google Scholar 

  • Gallardo CS, Penchaszadeh PE (2001) Hatching mode and latitude in marine gastropods: revisiting Thorson’s paradigm in the southern hemisphere. Mar Biol 138:547–552

    Article  Google Scholar 

  • Giese AC, Kanatani H (1987) Maturation and spawning. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. Blackwell Scientific Publication and The Boxwood Press, California, pp 252–313

    Google Scholar 

  • Giglioli MEC (1955) The egg masses of the Naticidae (Gastropoda). J Fish Res Board Can 12:287–327

    Article  Google Scholar 

  • Gohar HAF, Eisawy AM (1967) The egg masses of five Rachiglossan prosobranchs from the Red Sea. Publ Mar Biol Stn Al-Ghardaqa 14:216–268

    Google Scholar 

  • Hain S (1990) Die beschalten benthischen Mollusken (Gastropoda und Bivalvia) des Weddellmeeres, Antarktis = The benthic seashells (Gastropoda and Bivalvia) of the Weddell Sea, Antarctica. Ber Polarforsch 70:1–184

    Google Scholar 

  • Hain S, Arnaud PM (1992) Notes on the reproduction of high-Antarctic molluscs from the Weddell Sea. Polar Biol 12:303–312

    Article  Google Scholar 

  • Hertling H (1932) Zur Kenntnis des Laichbandes und der Veligerlarven von Natica pulchella Risso. Zool Anz 100:95–100

    Google Scholar 

  • Huelsken T, Marek C, Schreiber S, Schmidt I, Hollmann M (2008) The Naticidae (Mollusca: Gastropoda) of Giglio Island (Tuscany, Italy): Shell characters, live animals, and a molecular analysis of egg masses. Zootaxa 1770:1–40

    Google Scholar 

  • Kohn AJ (2012) Egg size, life history, and tropical marine gastropod biogeography. Am Malacol Bull 30:163–174

    Article  Google Scholar 

  • Lardies MA, Fernández M (2002) Effect of oxygen availability in determining clutch size in Acanthina monodon. Mar Ecol Progr Ser 239:139–146

    Article  Google Scholar 

  • Lauretta D, Penchaszadeh PE (2017) Gigantic oocytes in the deep sea black coral Dendrobathypathes grandis (Antipatharia) from the Mar del Plata submarine canyon area (southwestern Atlantic). Deep-Sea Res I 128:109–114. https://doi.org/10.1016/j.dsr.2017.08.011

    Article  Google Scholar 

  • Lebour MV (1936) Notes on the eggs and larvae of some Plymouth prosobranchs. J Mar Biol Assoc UK 20:547–565

    Article  Google Scholar 

  • Levitan DR (2000) Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am Nat 156:175–192

    Article  PubMed  Google Scholar 

  • Martinez MI, Penchaszadeh PE (2017) A new species of brooding Psolidae (Echinodermata: Holothuroidea) from deep-sea off Argentina. Deep-Sea Res II, Southwestern Atlantic Ocean. https://doi.org/10.1016/j.dsr1012.2017.1005.1007

    Book  Google Scholar 

  • Montgomery EM, Hamel J-F, Mercier A (2016) The deep-sea neogastropod Buccinum scalariforme: reproduction, development and growth. Deep-Sea Res I 119:24–33

    Article  Google Scholar 

  • Moran AL (1999) Size and performance of juvenile marine invertebrates potential contrasts between intertidal and subtidal benthic habitats. Am Zool 39:304–312

    Article  Google Scholar 

  • Moran AL, Emlet RB (2001) Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82:1597–1612

    Article  Google Scholar 

  • Murray F (1966) A brief account of the spawn of Conuber incei (Philippi, 1853). J Malacol Soc Australia 10:49–52

    Google Scholar 

  • Natarajan AV (1957) Studies on the egg masses and larval development of some prosobranchs from the Gulf of Mannar and the Palk bay. Proc Indian Acad Sci 46:170–228

    Google Scholar 

  • Pastorino G (2005) Recent Naticidae (Mollusca: Gastropoda) from the Patagonian Coast. Veliger 47:225–258

    Google Scholar 

  • Pastorino G (2016) Revision of the genera Pareuthria Strebel, 1905, Glypteuthria Strebel, 1905 and Meteuthria Thiele, 1912 (Gastropoda: Buccinulidae) with the description of three new genera and two new species from Southwestern Atlantic waters. Zootaxa 4179:301–344

    Article  PubMed  Google Scholar 

  • Pastorino G, Averbuj A, Penchaszadeh PE (2009) On the egg masses, eggs and embryos of Notocochlis isabelleana (d’Orbigny, 1840) (Gastropoda: Naticidae) from northern Patagonia. Malacologia 51:395–402

    Article  Google Scholar 

  • Pearse JS, Lockhart SJ (2004) Reproduction in cold water: paradigm changes in the 20th century and a role for cidaroid sea urchins. Deep-Sea Res II 51:1533–1549

    Article  Google Scholar 

  • Pedersen R, Page L (2000) Development and metamorphosis of the planktotrophic larvae of the moon snail, Polinices lewisii (Gould, 1847)(Caenogastropoda: Naticoidea). Veliger 43:58–63

    Google Scholar 

  • Penchaszadeh P (1988) Reproductive patterns of some South American Prosobranchia as a contribution to classification. Malacol rev 4:284–287

    Google Scholar 

  • Penchaszadeh PE, Atencio M, Martinez MI, Pastorino G (2016) Giant egg capsules and hatchlings in a deep-sea moon snail (Naticidae) from a southwestern Atlantic Canyon. Mar Biol 163:209. https://doi.org/10.1007/s00227-016-2990-z

    Article  CAS  Google Scholar 

  • Penchaszadeh PE, Teso V, Pastorino G (2017) Spawn in two deep-sea volute gastropods (Neogastropoda: Volutidae) from southwestern Atlantic waters. Deep-Sea Res I 130:55–62. https://doi.org/10.1016/j.dsr.2017.10.011

    Article  Google Scholar 

  • Perry JC, Roitberg BD (2006) Trophic egg laying: hypotheses and tests. Oikos 112:706–714

    Article  Google Scholar 

  • Rex M, Van Ummersen C, Turner R (1979) Reproductive pattern in the abyssal snail Benthonella tenella (Jeffreys). In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, South Carolina, pp 173–188

    Google Scholar 

  • Rivadeneira PR, Brogger MI, Penchaszadeh PE (2017) Aboral brooding in the deep water sea star Ctenodiscus australis Lütken, 1871 (Asteroidea) from the Southwestern Atlantic. Deep-Sea Res I 123:105–109

    Article  Google Scholar 

  • Rivest BR (1986) Extra-embryonic nutrition in the prosobranch gastropod Urosalpinx cinerea (Say, 1822). Bull Mar Sci 39:498–505

    Google Scholar 

  • Robison B, Seibel B, Drazen J (2014) Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. PLoS One 9:e103437

    Article  PubMed  PubMed Central  Google Scholar 

  • Rokop FJ (1974) Reproductive patterns in the deep-sea benthos. Science 186:743–745

    Article  PubMed  CAS  Google Scholar 

  • Scheltema RS (1994) Adaptations for reproduction among deep-sea benthic molluscs: an appraisal. In: Young CM, Eckelbarger KJ (eds) Reproduction, larval biology, and recruitment of the deep-sea benthos. Columbia University Press, New York, pp 45–75

    Google Scholar 

  • Spight TM (1976) Ecology of hatching size for marine snails. Oecologia 24:283–294

    Article  PubMed  Google Scholar 

  • Thorson G (1935) Studies on the egg-capsules and development of Arctic marine prosobranchs. Medd Grønl 100(5):1–71

    Google Scholar 

  • Thorson G (1936) The larval development, growth and metabolism of Antarctic marine bottom invertebrates. Medd Grønl 100(6):1–155

    Google Scholar 

  • Thorson G (1940) Studies on the egg masses and larval development of gastropoda from the Iranian Gulf. Danish Sci Invest Iran 2:159–238

    Google Scholar 

  • Thorson G (1946) Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the sound (Øresund). Medd Dan Fisk Havunders (Ser Plankton) 4:1–523

    Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc 25:1–45

    Article  PubMed  CAS  Google Scholar 

  • Torigoe K, Inaba A (2011) Revision on the classification of Recent Naticidae. Bull Nishinomiya Shell Mus 7:1–133

    Google Scholar 

  • Tyler P, Young C (1992) Reproduction in marine invertebrates in “stable” environments: the deep sea model. Invertebr Reprod Dev 22:185–192

    Article  Google Scholar 

  • Tyler P, Grant A, Pain S, Gage J (1982) Is annual reproduction in deep-sea echinoderms a response to variability in their environment? Nature 300:747–750

    Article  Google Scholar 

  • Young CM (2003) Reproduction, development and life-history traits. In: Tyler PA (ed) Ecosystems of the deep-oceans. Elsevier, Amsterdam, pp 381–426

    Google Scholar 

Download references

Acknowledgments

Special thanks are due to Alan Kabat for his thoughtful suggestions that highly improved the manuscript, to the Editors and to Juan Pablo Livore for reviewing the final manuscript. We thank Melina Atencio and Valeria Teso and the people involved in the ‘Talud Continental’ expeditions. This work was funded by PICT 2013–2504 from Agencia Nacional de Promoción Científica y Tecnológica, and PIP 0253 from Consejo Nacional de Investigaciones Científicas y Técnicas. This is publication #99 of LARBIM.

Funding

The present project was partially supported by Fondo para la Investigación Científica y Tecnológica, Argentina (FONCYT, PICT) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Averbuj.

Ethics declarations

Conflict of interest

Andres Averbuj, Guido Pastorino and Pablo E. Penchaszadeh declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: J. Grassle.

Reviewed by A. Kabat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averbuj, A., Penchaszadeh, P.E. & Pastorino, G. Egg masses and development of Falsilunatia eltanini (Mollusca: Gastropoda): a deep-sea naticid from a Southwestern Atlantic Canyon. Mar Biol 165, 81 (2018). https://doi.org/10.1007/s00227-018-3337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-018-3337-8

Navigation