Skip to main content
Log in

Diel behaviour of tuna and non-tuna species at drifting fish aggregating devices (DFADs) in the Western Indian Ocean, determined by fishers’ echo-sounder buoys

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

As tropical pelagic species are attracted by floating objects in the surface of the ocean, industrial purse seiners deploy thousands of man-made drifting fish aggregating devices (DFADs) to facilitate their catch of tunas. However, the sharp increase in the use of DFADs leads to some ecological concerns, such as producing higher amount of by-catch or alteration of natural behaviour of fish. We used fishers’ satellite-linked GPS buoys equipped with echo-sounders to continuously collect acoustic samples under remote DFADs and investigate the diel behaviour patterns of the associated fish (i.e., non-tuna species and small and large tunas) and their potential biological interactions. Results showed a strong correlation between the presence of non-tuna species and small tunas, and between small and large tunas. Diel biomass dynamics were highly variable and seem to be both species and region-specific, which may suggest adaptive behaviour patterns. Tuna associated with DFADs in the Somalia area showed a clear night-time associative behaviour. In contrast, tuna in the NW Seychelles associated with DFADs to a greater degree during daytime. In the Mozambique Channel, large tuna showed daytime associative behaviour, while small tuna showed a maximum biomass at sunrise, decreasing over the day. The associative behaviour of non-tuna species was slightly variable, being uniform near the equator or showing two peaks when increasing latitude. This study shows the importance and effect of biological factors on the associative behaviour of the fish and serves as a first step towards improving pre-set selectivity of purse seine fisheries using DFADs. The fish presence and density may improve DFAD attraction and detectability and the observed periodicity by species and area shows both similarities and differences with published literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babaran R, Endo C, Mitsunaga Y, Anraku K (2009) Telemetry study on juvenile yellowfin tuna Thunnus albacares around a payao in the Philippines. Fish Eng 46:21–28

    Google Scholar 

  • Bakun A, Roy C, Lluch-Cota S (1998) Coastal upwelling and other processes regulating ecosystem productivity and fish production in the western Indian Ocean Large Marine Ecosystems of the Indian Ocean: assessment, sustainability and management. Wiley-Blackwell, USA

    Google Scholar 

  • Baske A, Gibbon J, Benn J, Nickson A (2012) Estimating the use of drifting Fish Aggregation Devices (FADs) around the globe. PEW Environmental group, discussion paper, p 8

  • Bromhead D, Foster J, Attard R, Findlay J, Kalish J (2003) A review of the impacts of fish aggregating devices (FADs) on tuna fisheries. Final report to the Fisheries Resources Research Fund Bureau of Rural Sciences, Canberra, Australia

  • Capello M, Soria M, Cotel P, Deneubourg J-L, Dagorn L (2011) Quantifying the Interplay between Environmental and Social Effects on Aggregated-Fish Dynamics. PLoS ONE 6:e28109. doi:10.1371/journal.pone.0028109

    Article  CAS  Google Scholar 

  • Cardinale M, Linder M, Bartolino V, Maiorano L, Casini M (2009) Conservation value of historical data: reconstructing stock dynamics of turbot during the last century in the Kattegat-Skagerrak. Mar Ecol Prog Ser 386:197–206

    Article  Google Scholar 

  • Castro J, Santiago J, Santana-Ortega A (2002) A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis. Rev Fish Biol Fisheries 11:255–277

    Article  Google Scholar 

  • Cayré P (1991) Behaviour of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) around fish aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging. Aquat Living Resour 4:1–12

    Article  Google Scholar 

  • Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numer Math 31:377–403. doi:10.1007/bf01404567

    Article  Google Scholar 

  • Dagorn L, Holland K, Itano D (2007) Behavior of yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna in a network of fish aggregating devices (FADs). Mar Biol 151:595–606

    Article  Google Scholar 

  • Dagorn L, Filmalter JD, Forget F, Amandè MJ, Hall MA, Williams P, Murua H, Ariz J, Chavance P, Bez N (2012a) Targeting bigger schools can reduce ecosystem impacts of fisheries. Can J Fish Aquat Sci 69:1463–1467

    Article  Google Scholar 

  • Dagorn L, Holland KN, Restrepo V, Moreno G (2012b) Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems? Fish Fisheries doi:10.1111/j.1467-2979.2012.00478.x

    Google Scholar 

  • Dagorn L, Bez N, Fauvel T, Walker E (2013) How much do fish aggregating devices (FADs) modify the floating object environment in the ocean? Fisheries Oceanography doi:10.1111/fog.12014

    Google Scholar 

  • Davies TK, Mees CC, Milner-Gulland EJ (2014) The past, present and future use of drifting fish aggregating devices (FADs) in the Indian Ocean. Marine Policy 45:163–170. doi:10.1016/j.marpol.2013.12.014

    Article  Google Scholar 

  • Dempster T, Kingsford MJ (2003) Homing of pelagic fish to fish aggregation devices (FADs): the role of sensory cues. Mar Ecol Prog Ser 258:213–222. doi:10.3354/meps258213

    Article  Google Scholar 

  • Doray M, Josse E, Gervain P, Reynal L, Chantrel J (2007) Joint use of echosounding, fishing and video techniques to assess the structure of fish aggregations around moored Fish Aggregating Devices in Martinique (Lesser Antilles). Aquat Living Resour 20:357–366

    Article  Google Scholar 

  • Doray M, Petitgas P, Nelson L, Mahévas S, Josse E, Reynal L (2009) The influence of the environment on the variability of monthly tuna biomass around a moored, fish-aggregating device. ICES J Mar Sci J du Cons 66:1410–1416. doi:10.1093/icesjms/fsp039

    Article  Google Scholar 

  • Floch L, Delgado de Molina A, Assan C, Dewals P, Areso J, Chassot E (2012) Statistics of the european purse seine fishing fleet and associated flags targeting tropical tunas in the Indian Ocean (1981–2011). IOTC Working Party on Tropical Tunas, 14th session IOTC, Grand Baie, Mauritius, 24–29 Oct 2012

  • Fonteneau A, Pallares P, Pianet R (2000) A worldwide review of purse seine fisheries on FADs. Peche thoniere et dispositifs de concentration de poissons, Caribbean-Martinique, 15–19 oct 1999: 15–35

  • Fonteneau A, Chassot E, Bodin N (2013) Global spatio-temporal patterns in tropical tuna purse seine fisheries on drifting fish aggregating devices (DFADs): Taking a historical perspective to inform current challenges. Aquat Living Resour 26:37–48. doi:10.1051/alr/2013046

    Article  Google Scholar 

  • Forget FG, Capello M, Filmalter JD, Govinden R, Soria M, Cowley PD, Dagorn L (2015) Behaviour and vulnerability of target and non-target species at drifting fish aggregating devices (FADs) in the tropical tuna purse seine fishery determined by acoustic telemetry. Can J Fish Aquatic Sci: 1–8 doi:10.1139/cjfas-2014-0458

  • Fréon P, Dagorn L (2000) Review of fish associative behaviour: toward a generalisation of the meeting point hypothesis. Rev Fish Biol Fisheries 10:183–207

    Article  Google Scholar 

  • Ghazali SM, Montgomery JC, Jeffs AG, Ibrahim Z, Radford CA (2013) The diel variation and spatial extent of the underwater sound around a fish aggregation device (FAD). Fish Res. doi:10.1016/j.fishres.2013.07.015

    Google Scholar 

  • Giannoulaki M, Iglesias M, Tugores MP, Bonanno A, Patti B, De Felice A, Leonori I, Bigot JL, TiČIna V, Pyrounaki MM, Tsagarakis K, Machias A, Somarakis S, Schismenou E, Quinci E, Basilone G, Cuttitta A, Campanella F, Miquel J, OÑAte D, Roos D, Valavanis V (2013) Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages. Fish Oceanogr 22:69–89. doi:10.1111/fog.12005

    Article  Google Scholar 

  • Govinden R, Dagorn L, Filmalter J, Soria M (2010) Behaviour of Tuna associated with Drifting Fish Aggregating Devices (FADs) in the Mozambique Channel. IOTC-2010-WPTT-25

  • Govinden R, Jauhary R, Filmalter J, Forget F, Soria M, Adam S, Dagorn L (2013) Movement behaviour of skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tuna at anchored fish aggregating devices (FADs) in the Maldives, investigated by acoustic telemetry. Aquat Living Resour 26:69–77 doi:10.1051/alr/2012022

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Monographs on Statistics and Applied Probability 43. Chapman & Hall/CRC, London

    Google Scholar 

  • Holland KN, Brill R, Chang R (1990) Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish Bull 88:493–507

    Google Scholar 

  • Itano D, Restrepo V (2011) Status of the Purse Seine Bycatch Mitigation Project and research cruises funded by the International Seafood Sustainability Foundation with notes on the development of best practices for the live release of encircled animals. WCPFC-SC7-2011/EB-WP-11

  • Jones AR, Hosegood P, Wynn RB, De Boer MN, Butler-Cowdry S, Embling CB (2014) Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot. Prog Oceanogr 128:30–48. doi:10.1016/j.pocean.2014.08.002

    Article  Google Scholar 

  • Josse E, Bertrand A (2000) In situ acoustic target strength measurements of tuna associated with a fish aggregating device. ICES J Mar Sci 57:911

    Article  Google Scholar 

  • Josse E, Bach P, Dagorn L (1998) Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys. Hydrobiologia 371:61–69

    Article  Google Scholar 

  • Jury M, McClanahan T, Maina J (2010) West Indian Ocean variability and East African fish catch. Mar Environ Res 70:162–170. doi:10.1016/j.marenvres.2010.04.006

    Article  CAS  Google Scholar 

  • Kim Y-J, Gu C (2004) Smoothing spline Gaussian regression: more scalable computation via efficient approximation. J R Stat Soc B 66:337–356. doi:10.1046/j.1369-7412.2003.05316.x

    Article  Google Scholar 

  • Klimley AP, Holloway C (1999) School fidelity and homing synchronicity of yellowfin tuna, Thunnus albacares. Mar Biol 133:307–317

    Article  Google Scholar 

  • Lemos RT, Gomes JF (2004) Do local environmental factors induce daily and yearly variability in bluefin tuna (Thunnus thynnus) trap catches? Ecol Modell 177:143–156. doi:10.1016/j.ecolmodel.2004.02.005

    Article  Google Scholar 

  • Leroy B, Nicol S, Lewis A, Hampton J, Kolody D, Caillot S, Hoyle S (2015) Lessons learned from implementing three, large-scale tuna tagging programmes in the western and central Pacific Ocean. Fish Res 163:23–33. doi:10.1016/j.fishres.2013.09.001

    Article  Google Scholar 

  • Lopez J, Moreno G, Soria M, Cotel P, Dagorn L (2010) Remote discrimination of By-catch in purse seine fishery using fishers’ echo-sounder buoys. IOTC-2010-WPEB-03

  • Lopez J, Moreno G, Sancristobal I, Murua J (2014) Evolution and current state of the technology of echo-sounder buoys used by Spanish tropical tuna purse seiners in the Atlantic, Indian and Pacific Oceans. Fish Res 155:127–137. doi:10.1016/j.fishres.2014.02.033

    Article  Google Scholar 

  • Lopez J, Moreno G, Boyra G, Dagorn L (2016) A model based on data from echosounder buoys to estimate biomass of fish species associated with fish aggregating devices. Fish Bull 114:166–178 doi:10.7755/FB.114.2.4

    Article  Google Scholar 

  • MacLennan DN, Simmonds EJ (1992) Fisheries acoustics. Chapman & Hall, London

    Google Scholar 

  • Maclennan D, Fernandes P, Dalen J (2002) A consistent approach to definitions and symbols in fisheries acoustics. ICES J Mar Sci 59:365

    Article  Google Scholar 

  • Marsac F, Barlow R, Ternon JF, Ménard F, Roberts M (2014) Ecosystem functioning in the mozambique channel: synthesis and future research. Deep sea research part ii: topical studies. Oceanography 100:212–220. doi:10.1016/j.dsr2.2013.10.028

    Google Scholar 

  • Matsumoto T, Satoh K, Toyonaga M (2014) Behavior of skipjack tuna (Katsuwonus pelamis) associated with a drifting FAD monitored with ultrasonic transmitters in the equatorial central Pacific Ocean. Fish Res 157:78–85. doi:10.1016/j.fishres.2014.03.023

    Article  Google Scholar 

  • Matsumoto T, Okamoto H, Toyonaga M (2006) Behavioral study of small bigeye, yellowfin and skipjack tunas associated with drifting FADs using ultrasonic coded transmitter in the central Pacific Ocean. Second Regular Session of the Scientific Committee, Western and Central Pacific Fisheries Commission Information Paper 7

  • Miller KA (2007) Climate variability and tropical tuna: Management challenges for highly migratory fish stocks. Mar Policy 31:56–70. doi:10.1016/j.marpol.2006.05.006

    Article  Google Scholar 

  • Mitsunaga Y, Endo C, Anraku K, Selorio CM Jr, Babaran RP (2012) Association of early juvenile yellowfin tuna Thunnus albacares with a network of payaos in the Philippines. Fish Sci 78:15–22

    Article  CAS  Google Scholar 

  • Mitsunaga Y, Endo C, Babaran RP (2013) Schooling behavior of juvenile yellowfin tuna Thunnus albacares around a fish aggregating device (FAD) in the Philippines. Aquat Living Resour 26:79–84. doi:10.1051/alr/2012031

    Article  Google Scholar 

  • Moreno G, Dagorn L, Sancho G, Itano D (2007a) Fish behaviour from fishers knowledge: the case study of tropical tuna around drifting fish aggregating devices (DFADs). Can J Fish Aquatic Sci 64:1517–1528

    Article  Google Scholar 

  • Moreno G, Josse E, Brehmer P, Nøttestad L (2007b) Echotrace classification and spatial distribution of pelagic fish aggregations around drifting fish aggregating devices (DFAD). Aquat Living Resour 20:343–356

    Article  Google Scholar 

  • Moreno G, Dagorn L, Capello M, Lopez J, Filmalter J, Forget F, Sancristobal I, Holland K (2015) Fish aggregating devices (FADs) as scientific platforms. Fish Res. doi:10.1016/j.fishres.2015.09.021

    Google Scholar 

  • Morgan A (2011) Fish aggregating devices and tuna: Impacts and management options. Ocean science division, Pew Environment Group, Washington, DC

  • Ohta I, Kakuma S (2005) Periodic behavior and residence time of yellowfin and bigeye tuna associated with fish aggregating devices around Okinawa Islands, as identified with automated listening stations. Mar Biol 146:581–594

    Article  Google Scholar 

  • Oshima T (2008) Target strength of Bigeye, Yellowfin and Skipjack measured by split beam echo sounder in a cage. IOTC-2008-WPTT-22

  • Pianet R, Pallarés P, Petit C (2000) New sampling and data processing strategy for estimating the composition of catches by species and sizes in the European purse seine tropical tuna fisheries. IOTC Proceedings WPDCS00-10 no. 3 (2000): 104–139

  • Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 305:346–347. doi:10.1126/science.1098222

    Article  CAS  Google Scholar 

  • Pitcher T, Parrish J (1993) Functions of shoaling behaviour in teleosts behaviour of teleost fishes. Chapman & Hall, London, pp 363–439

    Book  Google Scholar 

  • Robert M, Dagorn L, Deneubourg JL, Itano D, Holland K (2012) Size-dependent behavior of tuna in an array of fish aggregating devices (FADs). Mar Biol 159:907–914. doi:10.1007/s00227-011-1868-3

    Article  Google Scholar 

  • Robert M, Dagorn L, Filmalter J, Deneubourg J, Itano D, Holland K (2013a) Intra-individual behavioral variability displayed by tuna at fish aggregating devices (FADs). Mar Ecol Prog Ser 484:239–247. doi:10.3354/meps10303

    Article  Google Scholar 

  • Robert M, Dagorn L, Lopez J, Moreno G, Deneubourg J-L (2013b) Does social behavior influence the dynamics of aggregations formed by tropical tunas around floating objects? An experimental approach. J Exp Mar Biol Ecol 440:238–243. doi:10.1016/j.jembe.2013.01.005

    Article  Google Scholar 

  • Robert M, Dagorn L, Deneubourg JL (2014) The aggregation of tuna around floating objects: What could be the underlying social mechanisms? J Theor Biol 359:161–170. doi:10.1016/j.jtbi.2014.06.010

    Article  Google Scholar 

  • Romanov EV (2002) Bycatch in the tuna purse-seine fisheries of the western Indian Ocean. Fish Bull 100(1):90–105

    Google Scholar 

  • Schaefer K, Fuller D (2005) Behavior of bigeye (Thunnus obesus) and skipjack (Katsuwonus pelamis) tunas within aggregations associated with floating objects in the equatorial eastern Pacific. Mar Biol 146:781–792

    Article  Google Scholar 

  • Schaefer K, Fuller D (2013) Simultaneous behavior of skipjack (Katsuwonus pelamis), bigeye (Thunnus obsesus), and yellowfin (T. albacares) tunas, within large multi-species aggregations associated with drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean. Mar Biol 160:3005–3014. doi:10.1007/s00227-013-2290-9

    Article  CAS  Google Scholar 

  • Schott FA, Xie SP, McCreary JP Jr (2007) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002

    Google Scholar 

  • Scott GP, Lopez J (2014) The use of FADs in tuna fisheries. European Parliament Policy Department B: Structural and Cohesion Policies: Fisheries IP/B/PECH/IC/2013–123: p 70

  • Simmonds EJ, MacLennan DN (2005) Fisheries Acoustics: Theory and Practice, 2nd edn. Blackwell Science, London, pp 437

    Book  Google Scholar 

  • Soria M, Dagorn L, Potin G, Fréon P (2009) First field-based experiment supporting the meeting point hypothesis for schooling in pelagic fish. Anim Behav 78:1441–1446

    Article  Google Scholar 

  • Taquet M (2004) Le comportement agrégatif de la dorade coryphène (Coryphaena hippurus) autour des objets flottants

  • Taquet M, Dagorn L, Gaertner J-C, Girard C, Aumerruddy R, Sancho G, Itano D (2007a) Behavior of dolphinfish (Coryphaena hippurus) around drifting FADs as observed from automated acoustic receivers. Aquat Living Resour 20:323–330. doi:10.1051/alr:2008008

    Article  Google Scholar 

  • Taquet M, Sancho G, Dagorn L, Gaertner J, Itano D, Aumeeruddy R, Wendling B, Peignon C (2007b) Characterizing fish communities associated with drifting fish aggregating devices (FADs) in the Western Indian Ocean using underwater visual surveys. Aquat Living Resour 20:331–341

    Article  Google Scholar 

  • Team RDC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0 http://wwwR-projectorg doi:citeulike-article-id:2400517

    Google Scholar 

  • Tew Kai E, Marsac F (2010) Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel. Prog Oceanogr 86:214–223. doi:10.1016/j.pocean.2010.04.010

    Article  Google Scholar 

  • Ushioda M (2015) Estimating The Use of FADS Around the World. PEW Environmental group, discussion paper, p 19

  • Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, USA

    Google Scholar 

  • Wood SN (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J R Stat Soc B 70:495–518. doi:10.1111/j.1467-9868.2007.00646.x

    Article  Google Scholar 

  • Wood S (2014) Package ‘mgcv’. R package version17-29

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank Spanish fishing masters of tuna purse seiners in the Indian Ocean who kindly agreed to deploy the echo-sounder buoys used in the present study. We would like to thank the purse seine company owners and the association that represent them, ANABAC. We sincerely thank Dr. Jerry Scott for revising the English. This study was part of the European project MADE (Mitigating Adverse Ecological Impacts of open ocean fisheries; funded by DG Research, collaborative project no 210496) and SELECTUN programme (a project funded by ANABAC). The present work has also received economic support from the International Seafood Sustainability Foundation (ISSF). This study was partly funded by a PhD grant by the Fundación Centros Tecnologicos Iñaki Goenaga to Jon Lopez. This paper is contribution number 805 from AZTI-Tecnalia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Lopez.

Additional information

Responsible editor: G.H. Engelhard.

Reviewed by D. Beare and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, J., Moreno, G., Ibaibarriaga, L. et al. Diel behaviour of tuna and non-tuna species at drifting fish aggregating devices (DFADs) in the Western Indian Ocean, determined by fishers’ echo-sounder buoys. Mar Biol 164, 44 (2017). https://doi.org/10.1007/s00227-017-3075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3075-3

Keywords

Navigation