Skip to main content
Log in

Cardiac performance: a thermal tolerance indicator in scallops

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Thermal tolerance has become an active research area in marine poikilotherms due to the influence of increased sea temperature caused by global warming. Previous indicators of thermal tolerance in bivalves are generally laborious and time-consuming and even require killing the specimens. In this study, we demonstrated that heart rate (HR) was a stable and reliable indicator for scallop physiological status by applying an infrared-based cardiac performance monitoring system. The feasibility of HR-based Arrhenius break temperatures (ABTs) as a scallop thermal tolerance indicator was evaluated by investigating ABTs of four species with different thermal limits, including the Yesso scallop (Patinopecten yessoensis), the Zhikong scallop (Chlamys farreri), the bay scallop (Argopecten irradians), and the Catarina scallop (Argopecten ventricosus). In accordance with the thermal limits, ABTs of the Yesso scallop, Zhikong scallop, bay scallop, and Catarina scallop were 22.03 ± 0.19, 29.10 ± 0.25, 32.20 ± 0.25, and 34.09 ± 0.19 °C, respectively, suggesting that the ABT could indicate thermal limits in interspecific scallops. Variations in the ABTs were observed among intraspecific scallops with different sizes, weights, and ages, suggesting that smaller and younger scallops tend to have higher thermal limits. Significant differences in ABT were also observed between pre- and post-spawning individuals, implying that spawning behavior could decrease scallop thermal limits. The above results suggest that HR-based ABT can detect not only interspecific but also intraspecific thermal tolerance in scallops. This study reports the feasibility of infrared-based cardiac performance as a rapid, efficient, and noninvasive indicator for bivalve thermal tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An MI, Choi CY (2010) Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters. Comp Biochem Physiol B Biochem Mol Biol 155:34–42

    Article  Google Scholar 

  • Anestis A, Lazou A, Pörtner HO, Michaelidis B (2007) Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Regul Integr Comp Physiol 293:R911–R921

    Article  CAS  Google Scholar 

  • Anestis A, Pörtner HO, Karagiannis D, Angelidis P, Staikou A, Michaelidis B (2010) Response of Mytilus galloprovincialis (L.) to increasing seawater temperature and to marteliosis: metabolic and physiological parameters. Comp Biochem Physiol A Mol Integr Physiol 156:57–66

    Article  Google Scholar 

  • Ansell A, Barnett P, Bodoy A, Massé H (1980) Upper temperature tolerances of some European molluscs II. Donax vittatus, D. semistriatus and D. trunculus. Mar Biol 58:41–46

    Article  Google Scholar 

  • Ansell A, Barnett P, Bodoy A, Massé H (1981) Upper temperature tolerances of some European molluscs. Mar Biol 65:177–183

    Article  Google Scholar 

  • Bakhmet IN, Berger VJ, Khalaman V (2005) The effect of salinity change on the heart rate of Mytilus edulis specimens from different ecological zones. J Exp Mar Biol Ecol 318:121–126

    Article  Google Scholar 

  • Bakhmet IN, Fokina NN, Nefedova ZA, Nemova NN (2009) Physiological–biochemical properties of blue mussel Mytilus edulis adaptation to oil contamination. Environ Monit Assess 155:581–591

    Article  CAS  Google Scholar 

  • Bakhmet IN, Komendantov AJ, Smurov AO (2012) Effect of salinity change on cardiac activity in Hiatella arctica and Modiolus modiolus, in the White Sea. Polar Biol 35:143–148

    Article  Google Scholar 

  • Bamber S, Depledge M (1997) Responses of shore crabs to physiological challenges following exposure to selected environmental contaminants. Aquat Toxicol 40:79–92

    Article  CAS  Google Scholar 

  • Bayne BL (1976) Marine mussels: their ecology and physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Braby CE, Somero GN (2006) Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). J Exp Biol 209:2554–2566

    Article  Google Scholar 

  • Brokordt K, Himmelman J, Nusetti O, Guderley H (2000a) Reproductive investment reduces recuperation from exhaustive escape activity in the tropical scallop Euvola zizac. Mar Biol 137:857–865

    Article  CAS  Google Scholar 

  • Brokordt KB, Himmelman JH, Guderley HE (2000b) Effect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776. J Exp Mar Biol Ecol 251:205–225

    Article  Google Scholar 

  • Brokordt KB, Fernández M, Gaymer CF (2006) Domestication reduces the capacity to escape from predators. J Exp Mar Biol Ecol 329:11–19

    Article  Google Scholar 

  • Chapple JP, Smerdon GR, Berry R, Hawkins AJ (1998) Seasonal changes in stress-70 protein levels reflect thermal tolerance in the marine bivalve Mytilus edulis L. J Exp Mar Biol Ecol 229:53–68

    Article  CAS  Google Scholar 

  • Cheney D, MacDonald B, Elston R (2000) Summer mortality of Pacific oysters, Crassostrea gigas (Thunberg): initial findings on multiple environmental stressors in Puget Sound, Washington, 1998. J Shellfish Res 19:353–359

    Google Scholar 

  • Compton TJ, Rijkenberg MJ, Drent J, Piersma T (2007) Thermal tolerance ranges and climate variability: a comparison between bivalves from differing climates. J Exp Mar Biol Ecol 352:200–211

    Article  Google Scholar 

  • Curtis T, Williamson R, Depledge M (2000) Simultaneous, long-term monitoring of valve and cardiac activity in the blue mussel Mytilus edulis exposed to copper. Mar Biol 136:837–846

    Article  CAS  Google Scholar 

  • Dahlgren T, Weinberg J, Halanych K (2000) Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar Biol 137:487–495

    Article  Google Scholar 

  • Dahlhoff E, O’Brien J, Somero GN, Vetter RD (1991) Temperature effects on mitochondria from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures. Physiol Zool 64:1490–1508

    Article  Google Scholar 

  • De Pirro M, Santini G, Chelazzi G (1999) Cardiac responses to salinity variations in two differently zoned Mediterranean limpets. J Comp Physiol B 169:501–506

    Article  Google Scholar 

  • Depledge M, Andersen B (1990) A computer-aided physiological monitoring system for continuous, long-term recording of cardiac activity in selected invertebrates. Comp Biochem Physiol A Physiol 96:473–477

    Article  Google Scholar 

  • Dong Y, Williams GA (2011) Variations in cardiac performance and heat shock protein expression to thermal stress in two differently zoned limpets on a tropical rocky shore. Mar Biol 158:1223–1231

    Article  Google Scholar 

  • Elderkin CL, Klerks PL (2005) Variation in thermal tolerance among three Mississippi River populations of the zebra mussel, Dreissena polymorpha. J Shellfish Res 24:221–226

    Article  Google Scholar 

  • FAO (2013) Global aquaculture production statistics for the year 2011. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Guo X, Luo Y (2006) Scallop culture in China. Dev Aquac Fish Sci 35:1143–1161

    Article  Google Scholar 

  • Hamdoun AM, Cheney DP, Cherr GN (2003) Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Biol Bull 205:160–169

    Article  CAS  Google Scholar 

  • Houlihan D, Newton J (1978) Respiration of Patella vulgata on the shore. Physiology and behavior of marine organism. In: Proceeding of the 12th European symposium on marine biology, Pergamon Press, Oxford, pp 39–46

  • Jones H (1968) Some aspects of heart function in Patella vulgata L. Nature 217:1170–1172

    Article  CAS  Google Scholar 

  • Jones H (1983) The circulatory systems of gastropods and bivalves. Mollusca 5:189–238

    Article  Google Scholar 

  • Kennedy VS, Mihursky J (1971) Upper temperature tolerances of some estuarine bivalves. Chesapeake Sci 12:193–204

    Article  Google Scholar 

  • Kraffe E, Tremblay R, Belvin S, LeCoz J-R, Marty Y, Guderley H (2008) Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar Biol 156:25–38

    Article  CAS  Google Scholar 

  • Kvingedal R, Evans BS, Lind CE, Taylor JJ, Dupont-Nivet M, Jerry DR (2010) Population and family growth response to different rearing location, heritability estimates and genotype × environment interaction in the silver-lip pearl oyster (Pinctada maxima). Aquaculture 304:1–6

    Article  Google Scholar 

  • Laing I, Child AR (1996) Comparative tolerance of small juvenile palourdes (Tapes decussatus L.) and Manila clams (Tapes philippinarum Adams & Reeve) to low temperature. J Exp Mar Biol Ecol 195:267–285

    Article  Google Scholar 

  • Lannig G, Cherkasov AS, Pörtner H-O, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). Am J Physiol Regul Integr Comp Physiol 294:R1338–R1346

    Article  CAS  Google Scholar 

  • Maeda-Martinez AN, Sicard MT, Reynoso-Granados T (2000) A shipment method for scallop seed. J Shellfish Res 19:765–770

    Google Scholar 

  • Mclachla A, Erasmus T (1974) Temperature tolerances and osmoregulation in some estuarine bivalves. Zool Afr 9:1–13

    Article  Google Scholar 

  • Moffitt CM, Cajas-Cano L (2014) Blue growth: the 2014 FAO state of world fisheries and aquaculture. Fisheries 39:552–553

    Article  Google Scholar 

  • Morley SA, Hirse T, Pörtner H-O, Peck LS (2009) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A: Mol Integr Physiol 153:154–161

    Article  Google Scholar 

  • Nickerson DM, Facey DE, Grossman GD (1989) Estimating physiological thresholds with continuous two-phase regression. Physiol Zool 62:866–887

    Article  Google Scholar 

  • Park KH, Kim Y-S, Chung E-Y, Choe S-N, Choo J-J (2004) Cardiac responses of Pacific oyster Crassostrea gigas to agents modulating cholinergic function. Comp Biochem Physiol C Toxicol Pharmacol 139:303–308

    Article  Google Scholar 

  • Park H, Ahn I-Y, Lee HE (2007) Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress Chaperon 12:275

    Article  CAS  Google Scholar 

  • Pernet F, Tremblay R, Comeau L, Guderley H (2007) Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. J Exp Biol 210:2999–3014

    Article  Google Scholar 

  • Pörtner H-O et al (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 21:1975–1997

    Article  Google Scholar 

  • Rajagopal S (1997) The ecology of tropical marine mussels and their control in industrial cooling water systems. Dissertation, University of Nijmegen

  • Rajagopal S, Van der Gaag M, Van der Velde G, Jenner H (2005a) Upper temperature tolerances of exotic brackish-water mussel, Mytilopsis leucophaeata (Conrad): an experimental study. Mar Environ Res 60:512–530

    Article  CAS  Google Scholar 

  • Rajagopal S, Van der Velde G, Van der Gaag M, Jenner H (2005b) Factors influencing the upper temperature tolerances of three mussel species in a brackish water canal: size, season and laboratory protocols. Biofouling 21:87–97

    Article  CAS  Google Scholar 

  • Ramus JS, Vernberg FJ, Calabrese A, Thurberg FP, Vernberg WB (1977) Physiological responses of marine biota to pollutants. Academic Press, New York

    Google Scholar 

  • Santini G, Williams G, Chelazzi G (2000) Assessment of factors affecting heart rate of the limpet Patella vulgata on the natural shore. Mar Biol 137:291–296

    Article  Google Scholar 

  • Segal E (1956) Microgeographic variation as thermal acclimation in an intertidal mollusc. Biol Bull 111:129–152

    Article  Google Scholar 

  • Shumway SE, Parsons GJ (2011) Scallops: biology, ecology and aquaculture. Elsevier, Amsterdam

    Google Scholar 

  • Steffensen J, Johansen K, Bushnell P (1984) An automated swimming respirometer. Comp Biochem Physiol A Physiol 79:437–440

    Article  Google Scholar 

  • Stenseng E, Braby CE, Somero GN (2005) Evolutionary and acclimation-induced variation in the thermal limits of heart function in congeneric marine snails (Genus Tegula): implications for vertical zonation. Biol Bull 208:138–144

    Article  Google Scholar 

  • Stillman J, Somero G (1996) Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J Exp Biol 199:1845–1855

    Google Scholar 

  • Sukhotin A, Lajus D, Lesin P (2003) Influence of age and size on pumping activity and stress resistance in the marine bivalve Mytilus edulis L. J Exp Mar Biol Ecol 284:129–144

    Article  Google Scholar 

  • Vernberg WB, De Coursey PJ, O’Hara J (1974) Multiple environmental factor effects on physiology and behavior of the fiddler crab, Uca pugilator. In: Vernberg FJ, Vernberg WB (eds) Pollution and physiology of marine organisms. Academic Press, New York, pp 381–425

    Chapter  Google Scholar 

  • Waller TR (1991) Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier, New York, pp 1–73

    Google Scholar 

  • Wang R, Wang Z (2008) Science of marine shellfish culture. China Ocean University Press, Qingdao

    Google Scholar 

  • Wang C et al (2011) Introduction of the Peruvian scallop and its hybridization with the bay scallop in China. Aquaculture 310:380–387

    Article  Google Scholar 

  • Widdows J (1973) Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar Biol 20:269–276

    Article  Google Scholar 

  • Wilson JG, Elkaim B (1991) Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J Mar Biol Assoc UK 71:169–177

    Article  Google Scholar 

  • Wood CM, McDonald DG (1997) Global warming: implications for freshwater and marine fish. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wright D, Kennedy V, Roosenburg W, Castagna M, Mihursky J (1983) Temperature tolerance of embryos and larvae of five bivalve species under simulated power plant entrainment conditions: a synthesis. Mar Biol 77:271–278

    Article  Google Scholar 

  • Xiao J, Ford SE, Yang H, Zhang G, Zhang F, Guo X (2005) Studies on mass summer mortality of cultured zhikong scallops (Chlamys farreri Jones et Preston) in China. Aquaculture 250:602–615

    Article  Google Scholar 

  • Yuan YX, Qu KM, Chen JF, Chen BJ, Guo F, Li QF, Cui Y (1999) Adaptability of Chlamys farreri to environment—effects of temperature on survival, respiration, ingestion and digestion. J Fish Sci China 7:24–27

    Google Scholar 

  • Zhang FS (1999) Analysis of the causes of mass mortality of farming Chlamys farreri in summer in coastal areas of Shandong. China Mar Sci 1:018

    Google Scholar 

  • Zittier ZM, Bock C, Lannig G, Pörtner HO (2015) Impact of ocean acidification on thermal tolerance and acid-base regulation of Mytilus edulis (L.) from the North Sea. J Exp Mar Biol Ecol 473:16–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (31322055; 31172384) and the Fundamental Research Funds for the Central Universities (201564009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Zhang.

Ethics declarations

Conflict of interest

All authors, Q.X., Y.L., H.G., Q.Y., X.H., S.W., X.H., L.Z., and Z.B., declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: H.-O. Pörtner.

Reviewed by H. Guderley and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Q., Li, Y., Guo, H. et al. Cardiac performance: a thermal tolerance indicator in scallops. Mar Biol 163, 244 (2016). https://doi.org/10.1007/s00227-016-3021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3021-9

Keywords

Navigation