Skip to main content

Advertisement

Log in

Food availability in an anthropogenically impacted habitat determines tolerance to hypoxia in the Asian green mussel Perna viridis

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The Asian green mussel Perna viridis is tolerant to environmental stress, but its robustness varies between populations from habitats that differ in quality. So far, it is unclear whether local adaptations through stress-induced selection or phenotypic plasticity are responsible for these inter-population differences. We tested for the relevance of both mechanisms by comparing survival under hypoxia in mussels that were transplanted from an anthropogenically impacted (Jakarta Bay, Indonesia) to a natural habitat (Lada Bay, Indonesia) and vice versa. Mussels were retrieved 8 weeks after transplantation and exposed to hypoxia in the laboratory. Additional hypoxia tests were conducted with juvenile mussels collected directly from both sites. To elucidate possible relationships between habitat quality and mussel tolerance, we monitored concentrations of inorganic nutrients, temperature, dissolved oxygen, salinity, phytoplankton density and the mussels’ body condition index (BCI) for 20 months before, during and after the experiments. Survival under hypoxia depended mainly on the quality of the habitat where the mussels lived before the hypoxia tests and only to a small degree on their site of origin. Furthermore, stress tolerance was only higher in Jakarta than in Lada Bay mussels when the BCIs were substantially higher, which in turn correlated with the phytoplankton densities. We explain why phenotypic plasticity and high BCIs are more likely the causes of population-specific differences in hypoxia tolerance in P. viridis than stress-induced selection for robust genotypes. This is relevant to understanding the role of P. viridis as mariculture organism in eutrophic ecosystems and invasive species in the (sub)tropical world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altieri AH (2006) Inducible variation in hypoxia tolerance across the intertidal–subtidal distribution of the blue mussel Mytilus edulis. Mar Ecol Prog Ser 325:295–300

    Article  Google Scholar 

  • Andayani W, Sumartono A (2012) Saxitoxin in green mussels (Perna viridis, Mytiliae), blood cockle (Anadara granosa) and feathers cockle (Anadara antiquata, Arcidae) using high pressure liquid. J Coast Dev 15(3):252–259

    Google Scholar 

  • Anestis A, Lazou A, Pörtner HO, Michaelidis B (2007) Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Regul Integr Comp Physiol 293(2):R911–R921

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC

  • Arifin Z (2006) Pollution prevention and reduction strategies and implementation in the Jakarta Bay. Research Centre for Oceanography—LIPI Report, Jakarta, Indonesia, 21 pp

  • Cheung SG (1991) Energetics of transplanted populations of the green-lipped mussel Perna viridis (Linnaeus) (Bivalvia: Mytilidae) in Hong Kong. I: growth, condition and reproduction. Asian Mar Biol 8:117–131

    Google Scholar 

  • Cheung S (1993) Population dynamics and energy budgets of green-lipped mussel Perna viridis (Linnaeus) in a polluted harbour. J Exp Mar Biol Ecol 168(1):1–24

    Article  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11(12):1304–1315

    Article  Google Scholar 

  • Dam HG (2013) Evolutionary adaptation of marine zooplankton to global change. Annu Rev Mar Sci 5:349–370

    Article  Google Scholar 

  • Damar A (2003) Effects of enrichment on nutrient dynamics, phytoplankton dynamics and productivity in Indonesian tropical waters: a comparison between Jakarta Bay, Lampung Bay and Semangka Bay. PhD Thesis. Christian-Albrecht-University Kiel, Germany

  • Decker MB, Reitburg DL, Marcus N (2003) Geographical differences in behavioral responses to hypoxia: Local adaptation to an anthropogenic stressor? Ecol Soc Am 13(4):1104–1109

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929

    Article  CAS  Google Scholar 

  • Dsikowitzky L, Heruwati E, Ariyani F, Irianto HE, Schwarzbauer J (2014) Exceptionally high concentrations of the insect repellent N,N-diethyl-m-toluamide (DEET) in surface waters from Jakarta, Indonesia. Environ Chem Lett. doi:10.1007/s10311-014-0462-6

    Google Scholar 

  • Duarte C, Navarro JM, Acuña K et al (2014) Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. J Sea Res 85:308–314

    Article  Google Scholar 

  • Fang JKH, Wu RSS, Chan KY, Yip CKM, Shin PKS (2008) Influences of ammonia–nitrogen and dissolved oxygen on lysosomal integrity in green-lipped mussel Perna viridis: laboratory evaluation and field validation in Victoria Harbour, Hong Kong. Mar Pollut Bull 56(12):2052–2058

    Article  CAS  Google Scholar 

  • Galimany E, Ramón M, Ibarrola I (2011) Feeding behavior of the mussel Mytilus galloprovincialis (L.) in a Mediterranean estuary: a field study. Aquaculture 314(1–4):236–243

    Article  Google Scholar 

  • Hawkins AJS, Smith RFM, Tan SH, Yasin ZB (1998) Suspension-feeding behaviour in tropical bivalve molluscs: Perna viridis, Crassostrea belcheri, Crassostrea iradelei, Saccostrea cucculata and Pinctada margarifera. Mar Ecol Prog Ser 166:173–185

    Article  Google Scholar 

  • Hoffmann AA, Hercus MJ (2000) Environmental stress as an evolutionary force. Bioscience 50(3):217–226

    Article  Google Scholar 

  • Holmes MJ, Teo SLM, Lee FC, Khoo HW (1999) Persistent low concentrations of diarrhetic shellfish toxins in green mussels Perna viridis from the Johor Strait, Singapore: first record of diarrhetic shellfish toxins from South-East Asia. Mar Ecol Prog Ser 181:257–268

    Article  CAS  Google Scholar 

  • Jalius (2008) Bioakumulasi logam berat dan pengaruhnya terhadap gametogenesis kerang hiju Perna viridis: Studi kasus di teluk Jakarta, Teluk Banten dan Teluk Lada. PhD Thesis. Bogor Agricultural University, Indonesia

  • Jalius SDD, Sumantadinata K, Riani E, Ernawati Y (2008) Akumulasi Logam Berat dan Pengaruhnya Terhadap Spermatogenesis Kerang Hijau (Perna viridis). J Ilmu-Ilmu Perair Perikan Indones 15(1):77–83

    Google Scholar 

  • Jenkins BRJ (1979) Mussel cultivation in the Marlborough sounds (New Zealand). NZ Fishing Industry Board, Wellington, 75 pp

  • Jury M, Golingi T, Foster T (2011) Rapid environmental assessment for coastal development in Jakarta Bay. Report, DHI Water & Environment, Singapore, 53 pp

  • Krishnakumar PK, Asokan PK, Pillai VK (1990) Physiological and cellular responses to copper and mercury in the green mussel Perna viridis (Linnaeus). Aquat Toxicol 18(5):163–173

    Article  CAS  Google Scholar 

  • Leung PT, Ip JC, Mak SS et al (2014) De novo transcriptome analysis of Perna viridis highlights tissue-specific patterns for environmental studies. BMC Genom 15(1):1–14

    Article  Google Scholar 

  • Li SC, Wang WX, Hsieh DPH (2002) Effects of toxic dinoflagellate Alexandrium tamarense on the energy budgets and growth of two marine bivalves. Mar Environ Res 53(2):145–160

    Article  CAS  Google Scholar 

  • Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exper Biol 213(Pt 20):3548–3558

    Article  CAS  Google Scholar 

  • Lucas A, Beninger PG (1985) The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44:187–200

    Article  Google Scholar 

  • Melzner F, Stange P, Trübenbach K et al (2011) Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6(9):e24223

    Article  CAS  Google Scholar 

  • Mills M (2011) Introducing survival and event history analysis. SAGE Publications Ltd, London, p 279. ISBN 9781848601024

    Google Scholar 

  • Monari M, Foschi J, Rosmini R, Marin MG, Serrazanetti GP (2011) Heat shock protein 70 response to physical and chemical stress in Chamelea gallina. J Exp Mar Biol Ecol 397(2):71–78

    Article  CAS  Google Scholar 

  • Nicholson S (1999) Cytological and physiological biomarker responses from green mussels, Perna viridis (L.) transplanted to contaminated sites in Hong Kong coastal waters. Mar Pollut Bull 39(1–12):261–268

    Article  CAS  Google Scholar 

  • Nicholson S (2003) Cardiac and branchial physiology associated with copper accumulation and detoxication in the mytilid mussel Perna viridis (L.). J Exp Mar Biol Ecol 295(2):157–171

    Article  CAS  Google Scholar 

  • Ong CC, Yusoff K, Yap CK, Tan SG (2009) Genetic characterization of Perna viridis L. in peninsular Malaysia using microsatellite markers. J Genet 88(2):153–163

    Article  CAS  Google Scholar 

  • Parsons PA (1994) Habitats, stress, and evolutionary rates. J Evol Biol 7:387–397

    Article  Google Scholar 

  • Piacentini L, Fanti L, Specchia V, Bozzetti MP, Berloco M, Palumbo G, Pimpinelli S (2014) Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 123(4):345–354

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Radiarta IN, Albasri H, Sudradjat A (2011) Geographic information system-based modeling and analysis for site selection of green mussel, Perna viridis, mariculture in Lada Bay, Pandeglang, Banten province. Indones Aquac J 6(1):83–90

    Google Scholar 

  • Rinawati KT, Koike H et al (2012) Distribution, source identification, and historical trends of organic micropollutants in coastal sediment in Jakarta Bay, Indonesia. J Hazard Mater 217–218:208–216

    Article  Google Scholar 

  • Siregar V, Koropitan AF (2013) Primary productivity of Jakarta Bay in a changing environment: anthropogenic and climate change impacts. Biotropia 20(2):89–103

    Google Scholar 

  • Sudharyanto A, Muchtar M, Razak H, Tanabe DS (2005) Kontaminasi organoklorin persisten dalam kerang hijau. Oseanol Limnol Indones 37:1–14

    Google Scholar 

  • Takarina ND, Adiwibowo A (2011) Impact of heavy metals contamination on the biodiversity of marine benthic organisms in Jakarta Bay. J Coast Dev 14(2):2009–2012

    Google Scholar 

  • Therneau T (2013) A package for survival analysis in S. R package version 2.37-4. http://CRAN.R-project.org/package=survival

  • Thoha H, Adnan Q, Sidabutar T (2007) Note on the occurrence of phytoplankton and its relation with mass mortality in the Jakarta Bay, May and November 2004. Makara, Sains 11(2):63–67

    Google Scholar 

  • Tomas CR (1997) Identifying marine phytoplankton. Academic Press, San Diego

    Google Scholar 

  • Vakily JM (1992) Determination and comparison of bivalve growth, with emphasis on Thailand and other tropical areas. ICLARM Technical reports 36, 125 pp

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. PNAS 105(40):15452–15457

    Article  CAS  Google Scholar 

  • Walsh B, Blows MW (2009) Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol Syst 40(1):41–59

    Article  Google Scholar 

  • Wang Y, Hu M, Wong WH, Shin PKS, Cheung SG (2011) The combined effects of oxygen availability and salinity on physiological responses and scope for growth in the green-lipped mussel Perna viridis. Mar Pollut Bull 63(5–12):255–261

    Article  CAS  Google Scholar 

  • Wendling C, Huhn M, Ayu N, Bachtiar R, von Juterzenka K, Lenz M (2013) Habitat degradation correlates with tolerance to climate-change related stressors in the green mussel Perna viridis from West Java, Indonesia. Mar Pollut Bull 71:222–229

    Article  CAS  Google Scholar 

  • Williams T (2000) Metals and trace organic compounds in sediments and waters of Jakarta Bay and the Pulau Seribu complex, Indonesia. Mar Pollut Bull 40(3):277–285

    Article  CAS  Google Scholar 

  • Woo S, Denis V, Won H, Shin K, Lee G, Lee TK, Yum S (2013) Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool Stud 52(1):15

    Article  Google Scholar 

  • Wouthuyzen S, Tan CK, Tong JI, Hoang P, Ransi V, Tarigan S, Sediadi A (2008) Monitoring of Algal Blooms and Massive Fish Kill in the Jakarta Bay, Indonesia using satellite imageries. Proceedings of the first PI joint Symposium of ALOS data node for ALOS Science Program in Kyoto, Japan, 19–23 Nov 2007

  • Yamaji CS (1979) Illustration of the Marine Plankton of Japan. Hoikiska, Japan

    Google Scholar 

  • Yap CK, Tan SG, Ismail A, Omar H (2002) Genetic variation of the green-lipped mussel Perna viridis (L.) (Mytilidae: Mytiloida: Mytilicae) from the West Coast of Peninsular Malaysia. Zool Stud 41(4):376–387

    CAS  Google Scholar 

  • Yaqin K (2010) Potential use of cholinesterase activity from tropical green mussel, Perna viridis as a biomarker in effect-based marine monitoring in Indonesia. Coast Mar Sci 34(1):156–164

    Google Scholar 

  • Zhang G, Fang X, Guo X et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Indra Jaya and Azbas Taurusman for providing research facilities at the Marine Habitat Laboratory and the Integrated Laboratory at the faculty of Fisheries and Marine Science, Bogor Agricultural University (FPIK-IPB) and the German Academic Exchange Service (DAAD) for funding this project with a PhD scholarship. We very much acknowledge the help by the mussel farmers from Muara Kamal and Lada Bay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Huhn.

Ethics declarations

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: M. G. Chapman.

Reviewed by B. Vukovic-Gacic and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huhn, M., Zamani, N.P., von Juterzenka, K. et al. Food availability in an anthropogenically impacted habitat determines tolerance to hypoxia in the Asian green mussel Perna viridis . Mar Biol 163, 15 (2016). https://doi.org/10.1007/s00227-015-2786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-015-2786-6

Keywords

Navigation