Skip to main content
Log in

New epizooic symbioses between sponges of the genera Plakortis and Xestospongia in cryptic habitats of the Caribbean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Three new cases of sponge symbiosis between species of Plakortis and Xestospongia were found in reef caves and mesophotic reef habitats of the Caribbean. Plakortis sp. 1 from the Bahamas associates exclusively with Xestospongia deweerdtae which was originally described living freely on the deep fore-reef and caves of Jamaica. In addition, we found Plakortis sp. 2 from Puerto Rico which associates with both X. deweerdtae and a different Xestospongia sp. Sponge specimens were identified using cytochrome oxidase subunit 1, 28S rRNA and 18S rRNA gene sequence fragments, spicule analysis, and histological sections with SEM. Unlike previous sponge pairs, Xestospongia spp. not only grew as a thin veneer of tissue over the Plakortis host sponge but through the mesohyl, forming inner channels (0.1–1 cm) that may provide a benefit by facilitating more efficient water transport through the dense Plakortis tissue. Symbioses with both Plakortis spp. were documented from an early recruit stage through adulthood. Spicule measurements conducted on symbiotic versus free-living X. deweerdtae revealed significantly smaller spicule sizes for symbiotic individuals, suggesting a cost in terms of silicon availability, or a benefit in terms of a lower investment in skeleton synthesis for support. This study reveals new specialized symbiotic associations between distantly related sponge genera that likely represent an alternative strategy of adaptation for life in reef caves and mesophotic reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ávila E, Carballo JL, Cruz-Barraza JA (2007) Symbiotic relationships between sponges and other organisms from the Sea of Cortes (Mexican Pacific coast): same problems, same solutions. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity. Innovation and sustainability, Série Livros 28. Museu Nacional, Rio de Janeiro, pp 147–156

    Google Scholar 

  • Bavestrello G, Bonito M, Sarà M (1993) Silica content and spicular size variation during an annual cycle in Chondrilla nucula Schmidt (Porifera, Demospongiae) in the Ligurian Sea. Sci Mar (Barcelona) 57:421–425

    Google Scholar 

  • Connes R, Diaz J, Negre G, Paris J (1974) Étude morphologique, cytologique et sérologique de deux formes de Suberites massa de l’étang de Thau. Vie Milieu 24:213–224

    Google Scholar 

  • Dalisay DS, Quach T, Molinski TF (2010) Liposomal circular dichroism. Assignment of remote stereocenters in plakinic acids K and L from a PlakortisXestospongia Sponge Association. Org Lett 12:1524–1527

    Article  CAS  Google Scholar 

  • de Goeij JM, van den Berg H, van Oostveen MM, Epping EH, Van Duyl FC (2008) Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser 357:139

    Article  Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110

    Article  Google Scholar 

  • del Sol Jiménez M, Garzón SP, Rodríguez AD (2003) Plakortides M and N, bioactive polyketide endoperoxides from the Caribbean marine sponge Plakortis halichondrioides. J Nat Prod 66:655–661

    Article  Google Scholar 

  • Desqueyroux-Faundez R (1981) Révision de la collection d’éponges d’Amboine (Moluques, Indonésie) constituée par Bedot et Pictet et conservée au Muséum d’histoire naturelle de Genève. Rev Suisse Zool 88:723–764

    Google Scholar 

  • Engel S, Pawlik J (2000) Allelopathic activities of sponge extracts. Mar Ecol Prog Ser 207:273–281

    Article  Google Scholar 

  • Ereskovsky AV, Lavrov DV, Willenz P (2013) Five new species of Homoscleromorpha (Porifera) from the Caribbean Sea and re-description of Plakina jamaicensis. J Mar Biol Assoc UK 1–23

  • Faulkner D, Ghiselin MT (1983) Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar Ecol Prog Ser 13:295–301

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294

    CAS  Google Scholar 

  • Gaino E, Bavestrello G, Magnino G (1999) Self/non-self recognition in sponges. Ital J Zool 66:299–315

    Article  CAS  Google Scholar 

  • Gazave E, Lapébie P, Renard E, Vacelet J, Rocher C, Ereskovsky AV, Lavrov DV, Borchiellini C (2010) Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha). PLoS ONE 5:e14290

    Article  CAS  Google Scholar 

  • Gerovasileiou V, Voultsiadou E (2012) Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS ONE 7:e39873

    Article  CAS  Google Scholar 

  • Granek EF, Compton JE, Phillips DL (2009) Mangrove-exported nutrient incorporation by sessile coral reef invertebrates. Ecosystems 12:462–472

    Article  CAS  Google Scholar 

  • Harmelin JG, Vacelet J, Vasseur P (1985) Les grottes sous-marines obscures: un milieu extrême et un remarquable biotope refuge. Téthys 1:214–229

    Google Scholar 

  • Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JF (2001) Carbohydrate self-recognition mediates marine sponge cellular adhesion. Proc Natl Acad Sci U S A 98:9419–9424

    Article  CAS  Google Scholar 

  • Hill MS, Lopez NA, Young KA (2005) Anti-predator defenses in western North Atlantic sponges with evidence of enhanced defense through interactions between spicules and chemicals. Mar Ecol Prog Ser 291:93–102

    Article  Google Scholar 

  • Jiménez-Romero C, Ortiz I, Vicente J, Vera B, Rodríguez AD, Nam S, Jove R (2010) Bioactive Cycloperoxides isolated from the Puerto Rican sponge Plakortis halichondrioides. J Nat Prod 73:1694–1700

    Article  Google Scholar 

  • Kahng S, Garcia-Sais J, Spalding H, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen R (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Lehnert H, Van Soest R (1996) North Jamaican deep fore-reef sponges. Beaufortia 46:53–81

    Google Scholar 

  • Lehnert H, van Soest RWM (1999) More North Jamaican deep fore-reef sponges. Beaufortia 49:142–169

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Lewis S (1982) Sponge-Zoanthid associations: functional interactions. In: Rutzler K, Macintyre IG (eds) The Atlantic Barrier Reef ecosystem at Carrie Bow Cay, Belize, I: structure and communities. Smithsonian Institution Press, Washington, pp 465–474

    Google Scholar 

  • Leys SP, Yahel G, Reidenbach MA, Tunnicliffe V, Shavit U, Reiswig HM (2011) The sponge pump: the role of current induced flow in the design of the sponge body plan. PLoS ONE 6:e27787

    Article  CAS  Google Scholar 

  • López-Legentil S, Pawlik J (2009) Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI. Coral Reefs 28:157–165

    Article  Google Scholar 

  • Makarchenko A, Utkina N (2006) UV-stability and UV-protective activity of alkaloids from the marine sponge Zyzzya fuliginosa. Chem Nat Compd 42:78–81

    Article  CAS  Google Scholar 

  • Maldonado M, Cao H, Cao X, Song Y, Qu Y, Zhang W (2012a) Experimental silicon demand by the sponge Hymeniacidon perlevis reveals chronic limitation in field populations. Hydrobiologia 687:251–257

    Article  CAS  Google Scholar 

  • Maldonado M, Ribes M, van Duyl FC (2012b) 3 Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol 62:113

    Article  Google Scholar 

  • McLean JH, Harasewych M (1995) Review of western Atlantic species of cocculinid and pseudococculinid limpets, with descriptions of new species (Gastropoda: Cocculiniformia). Allen Press, Inc., Lawrence

    Google Scholar 

  • Mukai H, Shimoda H (1986) Studies on histocompatibility in natural populations of freshwater sponges. J Exp Zool 237:241–255

    Article  Google Scholar 

  • Muricy G (2011) Diversity of Indo-Australian Plakortis (Demospongiae: Plakinidae), with description of four new species. J Mar Biol Assoc U K 91:303–319

    Article  Google Scholar 

  • Muricy G, Solé-Cava AM, Thorpe JP, Boury-Esnault N (1996) Genetic evidence for extensive cryptic speciation in the subtidal sponge Plakina trilopha (Porifera: Demospongiae: Homoscleromorpha) from the Western Mediterranean. Mar Ecol Prog Ser 138:181–187

    Article  Google Scholar 

  • Pawlik J, Chanas B, Toonen R, Fenical W (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser 127:183–194

    Article  CAS  Google Scholar 

  • Pawlik JR, Henkel TP, McMurray SE, López-Legentil S, Loh T-L, Rohde S (2008) Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off. Mar Ecol Prog Ser 368:137–143

    Article  Google Scholar 

  • Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M (2013) Sponge heterotrophic capacity and bacterial community structure in high-and low-microbial abundance sponges. Mar Ecol. doi:10.1111/maec.12098

    Google Scholar 

  • Porter JW, Targett NM (1988) Allelochemical interactions between sponges and coral. Biol Bull 175:230–239

    Article  Google Scholar 

  • Ramsby B, Massaro A, Marshall E, Wilcox T, Hill M (2012) Epibiont–basibiont interactions: examination of ecological factors that influence specialization in a two-sponge association between Geodia vosmaeri (Sollas, 1886) and Amphimedon erina (de Laubenfels, 1936). Hydrobiologia 687:331–340

    Article  Google Scholar 

  • Redmond NE, Raleigh J, van Soest RW, Kelly M, Travers SA, Bradshaw B, Vartia S, Stephens KM, McCormack GP (2011) Phylogenetic relationships of the marine Haplosclerida (Phylum Porifera) employing ribosomal (28S rRNA) and mitochondrial (cox1, nad1) gene sequence data. PLoS ONE 6:e24344

    Article  CAS  Google Scholar 

  • Rützler K (1970) Spatial competition among Porifera: solution by epizoism. Oecologia 5:85–95

    Article  Google Scholar 

  • Rützler K (1981) An unusual bluegreen alga symbiotic with two new species of Ulosa (Porifera: Hymeniacidonidae) from Carrie Bow Cay, Belize*. Mar Ecol 2:35–50

    Article  Google Scholar 

  • Sarà M (1970) Competition and cooperation in sponge populations. Symp Zool Soc Lond 25:273–284

    Google Scholar 

  • Slattery M, Lesser M (2012) Mesophotic coral reefs: a global model of community structure and function Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia

  • Slattery M, Gochfeld DJ, Easson CG, O’Donahue LR (2013) Facilitation of coral reef biodiversity and health by cave sponge communities. Mar Ecol Prog Ser 476:71–86

    Article  Google Scholar 

  • Southwell MW, Weisz JB, Martens CS, Lindquist N (2008) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53:986

    Article  CAS  Google Scholar 

  • Swain TD, Wulff JL (2007) Diversity and specificity of Caribbean sponge–zoanthid symbioses: a foundation for understanding the adaptive significance of symbioses and generating hypotheses about higher-order systematics. Biol J Linn Soc 92:695–711

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • van Soest RWM, de Weerdt W (2001) New records of Xestospongia species (Haplosclerida: Petrosiidae) from the Curacao reefs, with a description of a new species. Beaufortia 51:109–117

    Google Scholar 

  • Vogel S (1978) Evidence for one-way valves in the water-flow system of sponges. J Exp Biol 76:137–148

    Google Scholar 

  • Walters KD, Pawlik JR (2005) Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges? Integr Comp Biol 45:352–358

    Article  Google Scholar 

  • Wilcox T, Hill M, DeMeo K (2002) Observations on a new two-sponge symbiosis from the Florida keys. Coral Reefs 21:198–204

    Google Scholar 

  • Wilson B, Clarkson P (2004) Australia’s spectacular cowries: a review and field study of two endemic genera: Zoila and Umbilia. Odyssey Publishing, El Cajon California

    Google Scholar 

  • Wulff JL (1997) Mutualisms among species of coral reef sponges. Ecology 78:146–159

    Article  Google Scholar 

  • Wulff JL (2008a) Collaboration among sponge species increases sponge diversity and abundance in a seagrass meadow. Mar Ecol 29:193–204

    Article  Google Scholar 

  • Wulff JL (2008b) Life-history differences among coral reef sponges promote mutualism or exploitation of mutualism by influencing partner fidelity feedback. Am Nat 171:597–609

    Article  Google Scholar 

  • Zea S, Henkel T, Pawlik J (2009) The sponge guide: a picture guide to Caribbean sponges. Available online at www.spongeguide.org. Accessed on: 2014-02-06

Download references

Acknowledgments

Funding for this project was supported by NOAA’s Living Marine Resource Cooperative Science Center award number NA11SEC4810002. JV received additional support by the American Museum of National History Lerner-Gray Fund for Marine Research for the collection of sponges in Puerto Rico. JV’s stipend was provided by NOAA’s Nancy Foster Scholarship award NA12NOS4290142. Support for sequencing of sponge samples was provided by the NSF BIO/IOS Program (IOS-0919728) Grant to RTH. We would like to thank the government of the Bahamas for letting us collect samples provided by an unnumbered scientific permit for the operation of the R/V Walton Smith in their territorial waters; the government of Mexico for providing the CONAPESCA permit DAPA/2/06504110612/1608; and the government of Puerto Rico for providing permit 2010-IC-043 (R-VS-PVS15-SJ-00190-08062010). All sponge collections from the Bahamas and Mexico were supported by NSF award OCE-1029515 to JRP. Scanning electron microscope images were provided by the University of Maryland Baltimore County’s NanoImaging facility with the assistance of Dr. Laszlo Takacs. Paul Jensen and Laura Grice are thanked for providing key points to the discussion of this manuscript. Micah Marty is thanked for his assistance in performing dissections and photographing sponge individuals during cruises to the Bahamas. JV is indebted to Milton Carlo at the University of Puerto Rico at Mayaguez for his dive assistance with the collection of sponge individuals from Puerto Rico. Fred Lentz and Jose A. Rivera are also thanked for providing boat access for the collection of sponges in Desecheo, Puerto Rico. Niamh E. Redmond is thanked for her advice in suggesting primers for this study. We thank Leah Blasiak for her assistance in troubleshooting phylogenetic tree analyses. Nilli Zmora is thanked for providing histological equipment to perform hematoxylin and eosin staining for light microscopy images. SZ’s work is contribution of the Centro de Estudios en Ciencias del Mar – CECIMAR, Universidad Nacional de Colombia, Sede Caribe. We thank two anonymous reviewers for very helpful comments. This is IMET contribution no. 14–136 and UMCES contribution no. 4960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell T. Hill.

Additional information

Communicated by M. G. Chapman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 108 kb)

227_2014_2546_MOESM2_ESM.eps

Supplementary material Phylogenetic tree generated from 1,300 bp of the 18S rRNA gene of sponges sequenced in this study (bold). Reference sequences downloaded from GenBank are indicated by species name and accession numbers. The tree topology was obtained from neighbor-joining (NJ) analysis. The bootstrap values at each node were generated from (NJ), maximum parsimony (MP), and maximum likelihood (ML) analysis, respectively (EPS 672 kb)

227_2014_2546_MOESM3_ESM.eps

Supplementary material Phylogenetic tree generated from 463 bp of the cytochrome oxidase subunit I of sponges sequenced in this study (bold). Reference sequences downloaded from GenBank are indicated by species name and accession numbers. The tree topology was obtained from neighbor-joining (NJ) analysis. The bootstrap values at each node were generated from (NJ), maximum parsimony (MP), and maximum likelihood (ML) analysis, respectively (EPS 668 kb)

227_2014_2546_MOESM4_ESM.eps

Supplementary material SEM images of (A) diods and triods from Plakortis sp. 1, (B) diods and triods from Plakortis sp. 2, (C) diods from Plakortis halichondrioides, (D) strongyles from free-living X. deweerdtae, (E) strongyles from associated X. deweerdtae, (F) isodictyal reticulation of oxeas from Xestospongia sp. Scale bar for all images 100 µm (EPS 22754 kb)

227_2014_2546_MOESM5_ESM.eps

Supplementary material Field marked specimens of Plakortis sp. 2/Xestospngia sp. (20–23) and Plakortis sp. 2/X. deweerdtae (24) monitored for growth over eight months. Scale bar for sponges photographed in August 2012 (20) 2 cm, (21) 3 cm, (22) 1 cm, (23) 2 cm, (24) 3 cm (EPS 204317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente, J., Zea, S., Powell, R.J. et al. New epizooic symbioses between sponges of the genera Plakortis and Xestospongia in cryptic habitats of the Caribbean. Mar Biol 161, 2803–2818 (2014). https://doi.org/10.1007/s00227-014-2546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2546-z

Keywords

Navigation