Skip to main content

Advertisement

Log in

Single and joint effects of regional- and local-scale variables on tropical seagrass fish assemblages

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seagrass beds are highly important for tropical ecosystems by supporting abundant and diverse fish assemblages that form the basis for artisanal fisheries. Although a number of local- and regional-scale variables are known to influence the abundance, diversity and assemblage structure of seagrass-associated fish assemblages, few studies have evaluated the relative and joint (interacting) influences of variables, especially those acting at different scales. Here, we examined the relative importance of local- and regional-scale factors structuring seagrass-associated fish assemblages, using a field survey in six seagrass (Thalassodendron ciliatum) areas around Unguja Island (Zanzibar, Tanzania). Fish density and assemblage structure were mostly affected by two regional-scale variables; distance to coral reefs, which positively affected fish density, and level of human development, which negatively affected fish density. On the local scale, seagrass biomass had a positive (but weaker) influence on fish density. However, the positive effect of seagrass biomass decreased with increasing level of human development. In summary, our results highlight the importance of assessing how multiple local and regional variables, alone and together, influence fish communities, in order to improve management of seagrass ecosystems and their services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams SM (1976) The ecology of eelgrass, Zostera marina (L.), fish communities. I. Structural analysis. J Exp Mar Bio Ecol 22:269–291

    Article  Google Scholar 

  • Attrill MJ, Strong JA, Rowden AA (2000) Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23:114–121

    Article  Google Scholar 

  • Baelde P (1990) Differences in the structures of fish assemblages in Thalassia testudinum beds in Guadeloupe, French West Indies, and their ecological significance. Mar Biol 105:163–173

    Article  Google Scholar 

  • Bartoń K (2013) MuMIn: multi-model inference. R package version 1.9.5

  • Beck MW (1997) Inference and generality in ecology: current problems and an experimental solution. Oikos 78:265–273

    Article  Google Scholar 

  • Bell JD, Westoby M (1986) Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. J Exp Mar Bio Ecol 104:249–274

    Article  Google Scholar 

  • Berkström C, Gullström M, Lindborg R, Mwandya AW, Yahya SAS, Kautsky N, Nyström M (2012) Exploring “knowns” and “unknowns” in tropical seascape connectivity with insights from East African coral reefs. Estuar Coast Shelf Sci 107:1–21

    Article  Google Scholar 

  • Berkström C, Lindborg R, Thyresson M, Gullström M (2013) Assessing connectivity in a tropical embayment: fish migrations and seascape ecology. Biol Conserv 166:43–53

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cullen-Unsworth LC, Nordlund LM, Paddock J, Baker S, McKenzie LJ, Unsworth RKF (2014) Seagrass meadows globally as a coupled social-ecological system: implications for human wellbeing. Mar Pollut Bull 83:387–397

    Article  CAS  Google Scholar 

  • de Boer WF, van Schie AMP, Jocene DF, Mabote ABP, Guissamulo A (2001) The impact of artisanal fishery on a tropical intertidal benthic fish community. Environ Biol Fishes 61:213–229

    Article  Google Scholar 

  • de la Torre-Castro M, Rönnbäck P (2004) Links between humans and seagrasses—an example from tropical East Africa. Ocean Coast Manag 47:361–387

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G (2006a) Seagrass beds and mangroves as potential nurseries for the threatened Indo-Pacific humphead wrasse, Cheilinus undulatus and Caribbean rainbow parrotfish, Scarus guacamaia. Biol Conserv 129:277–282

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G (2006b) Different surrounding landscapes may result in different fish assemblages in East African seagrass beds. Hydrobiologia 563:45–60

    Article  Google Scholar 

  • Dorenbosch M, Verberk W, Nagelkerken I, van der Velde G (2007) Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs. Mar Ecol Prog Ser 334:103–116

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65:159–174

    Article  Google Scholar 

  • Duarte CM, Kirkman H (2001) Methods for the measurement of seagrass abundance and depth distribution. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 141–153

    Chapter  Google Scholar 

  • Edgar GJ, Shaw C (1995) The production and trophic ecology of shallow-water fish assemblages in southern Australia III. General relationships between sediments, seagrasses, invertebrates and fishes. J Exp Mar Biol Ecol 194:107–131

    Article  Google Scholar 

  • Edgar GJ, Shaw C, Watsona GF, Hammond LS (1994) Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. J Exp Mar Biol Ecol 176:201–226

    Article  Google Scholar 

  • Eklöf JS, de la Torre-Castro M, Nilsson C, Rönnbäck P (2006) How do seaweed farms influence local fishery catches in a seagrass-dominated setting in Chwaka Bay, Zanzibar? Aquat Living Resour 19:137–147

    Article  Google Scholar 

  • Froese R, Pauly D (2013) FishBase. www.fishbase.org

  • Gell FR, Whittington MW (2002) Diversity of fishes in seagrass beds in the Quirimba Archipelago, northern Mozambique. Mar Freshw Res 53:115–121

    Article  Google Scholar 

  • Grace JB, Bollen KA (2005) Interpreting the results from multiple regression and structural equation models. Bull Ecol Soc Am 86:283–295

    Article  Google Scholar 

  • Grober-Dunsmore R, Frazer TK, Beets JP, Lindberg WJ, Zwick P, Funicelli NA (2008) Influence of landscape structure on reef fish assemblages. Landsc Ecol 23:37–53

    Article  Google Scholar 

  • Gullström M, de la Torre Castro M, Bandeira SO, Björk M, Dahlberg M, Kautsky N, Rönnbäck P, Öhman MC (2002) Seagrass ecosystems in the Western Indian Ocean. Ambio 31:588–596

    Google Scholar 

  • Gullström M, Bodin M, Nilsson PG, Öhman MC (2008) Seagrass structural complexity and landscape configuration as determinants of tropical fish assemblage composition. Mar Ecol Prog Ser 363:241–255

    Article  Google Scholar 

  • Gullström M, Berkström C, Öhman MC, Bodin M, Dahlberg M (2011) Scale-dependent patterns of variability of a grazing parrotfish (Leptoscarus vaigiensis) in a tropical seagrass-dominated seascape. Mar Biol 158:1483–1495

    Article  Google Scholar 

  • Gullström M, Dorenbosch M, Lugendo BR, Mwandya AW, Mgaya YD, Berkström C (2012) Connectivity and nursery function of shallow-water habitats in Chwaka Bay. In: de la Torre-Castro M, Lyimo TJ (eds) People, nature and research: past, present and future of Chwaka Bay, Zanzibar. WIOMSA, Zanzibar Town, pp 175–192

    Google Scholar 

  • Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin

    Book  Google Scholar 

  • Heck KL Jr, Orth RJ (2006) Predation in seagrass beds. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Netherlands, pp 537–550

    Google Scholar 

  • Hill J, Wilkinson C (2004) Methods for ecological monitoring of coral reefs—a resource for managers, version 1. Australian Institute of Marine Science, Townsville, Australia

    Google Scholar 

  • Hovel KA, Fonseca MS, Myer DL, Kenworthy WJ, Whitfield PE (2002) Effects of seagrass landscape structure, structural complexity and hydrodynamic regime on macrofaunal densities in North Carolina seagrass beds. Mar Ecol Prog Ser 243:11–24

    Article  Google Scholar 

  • Jackson EL, Rowden AA, Attrill MJ, Bossey SJ, Jones MB (2001) The importance of seagrass beds as a habitat for fishery species. Oceanogr Mar Biol an Annu Rev 39:269–303

    Google Scholar 

  • Jacquet JL, Zeller D (2007) Putting the “United” in the United Republic of Tanzania: reconstructing marine fisheries catches. In: Zeller D, Pauly D (eds) Reconstruction of marine fisheries catches for key countries and regions (1950–2005). Fisheries Centre Research Reports 15(2), Fisheries Centre, University of British Columbia, pp 49–60

  • Jelbart JE, Ross PM, Connolly RM (2007) Fish assemblages in seagrass beds are influenced by the proximity of mangrove forests. Mar Biol 150:993–1002

    Article  Google Scholar 

  • Jenkins GP, Black KP, Wheatley MJ, Hatton DN (1997) Temporal and spatial variability in recruitment of a temperate, seagrass-associated fish is largely determined by physical processes in the pre- and post-settlement phases. Mar Ecol Prog Ser 148:23–35

    Article  Google Scholar 

  • Jiddawi NS, Öhman MC (2002) Marine fisheries in Tanzania. Ambio 31:518–527

    Google Scholar 

  • Jordan F, Bartolini M, Nelson C, Patterson PE, Soulen HL (1997) Risk of predation affects habitat selection by the pinfish Lagodon rhomboides (Linnaeus). J Exp Mar Bio Ecol 208:45–56

    Article  Google Scholar 

  • Lokrantz J, Nyström M, Norström AV, Folke C, Cinner JE (2010) Impacts of artisanal fishing on key functional groups and the potential vulnerability of coral reefs. Environ Conserv 36:327–337

    Article  Google Scholar 

  • McClanahan TR, Nugues M, Mwachireya S (1994) Fish and sea urchin herbivory and competition in Kenyan coral reef lagoons: the role of reef management. J Exp Mar Bio Ecol 184:237–254

    Article  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  CAS  Google Scholar 

  • Nagelkerken I, van der Velde G (2002) Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curaçao (Netherlands Antilles)? Mar Ecol Prog Ser 245:191–204

    Article  Google Scholar 

  • Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, van’t Hof T, den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51:31–44

    Article  Google Scholar 

  • Nordlund L, Erlandsson J, de la Torre-Castro M, Jiddawi N (2010) Changes in an East African social-ecological seagrass system: invertebrate harvesting affecting species composition and local livelihood. Aquat Living Resour 23:399–416

    Article  Google Scholar 

  • Nordlund LM, de la Torre-Castro M, Erlandsson J, Conand C, Muthiga N, Jiddawi N, Gullström M (2013) Intertidal zone management in the Western Indian Ocean: assessing current status and future possibilities using expert opinions. Ambio. doi:10.1007/s13280-013-0465-8

  • Ogden JC (1988) The influence of adjacent systems on the structure and function of coral reefs. In: Proceedings of 6th international coral reef symposium, vol 1, pp 123–129

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-9

  • Olds AD, Connolly RM, Pitt KA, Maxwell PS (2012) Primacy of seascape connectivity effects in structuring coral reef fish assemblages. Mar Ecol Prog Ser 462:191–203

    Article  Google Scholar 

  • Orth RJ, Heck KL Jr, van Montfrans J (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator–prey relationships. Estuaries 7:339

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987

    Article  Google Scholar 

  • Parrish JD (1989) Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar Ecol Prog Ser 58:143–160

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1–111

  • Pittman SJ, Brown KA (2011) Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS ONE 6:e20583

    Article  CAS  Google Scholar 

  • Pittman SJ, McAlpine CA, Pittman KM (2004) Linking fish and prawns to their environment: a hierarchical landscape approach. Mar Ecol Prog Ser 283:233–254

    Article  Google Scholar 

  • Pittman SJ, Kneib RT, Simenstad CA (2011) Practicing coastal seascape ecology. Mar Ecol Prog Ser 427:187–190

    Article  Google Scholar 

  • Pollard DA (1984) A review of ecological studies on seagrass—fish communities, with particular reference to recent studies in Australia. Aquat Bot 18:3–42

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ralph PJ, Tomasko D, Moore K, Seddon S, Macinnis-Ng CMO (2006) Human impacts on seagrasses: eutrophication, sedimentation, and contamination. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Netherlands, pp 567–593

    Google Scholar 

  • Sirota L, Hovel KA (2006) Simulated eelgrass Zostera marina structural complexity: effects of shoot length, shoot density, and surface area on the epifaunal community of San Diego Bay, California, USA. Mar Ecol Prog Ser 326:115–131

    Article  Google Scholar 

  • Sogard SM, Olla BL (1993) The influence of predator presence on utilization of artificial seagrass habitats by juvenile walleye pollock, Theragra chalcogramma. Environ Biol Fishes 37:57–65

    Article  Google Scholar 

  • Sogard SM, Powell GVN, Holmquist JG (1987) Epibenthic fish communities on Florida Bay banks: relations with physical parameters and seagrass cover. Mar Ecol Prog Ser 40:25–39

    Article  Google Scholar 

  • Stewart KR, Lewison RL, Dunn DC, Bjorkland RH, Kelez S, Halpin PN, Crowder LB (2010) Characterizing fishing effort and spatial extent of coastal fisheries. PLoS ONE 5:e14451

    Article  CAS  Google Scholar 

  • Turner SJ, Hewitt JE, Wilkinson MR, Morrisey DJ, Thrush SF, Cummings VJ, Funnell G (1999) Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries 22:1016

    Article  Google Scholar 

  • UNEP (2001) Eastern Africa atlas of coastal resources—Tanzania. United Nations Environment Programme, Nairobi

  • Unsworth RKF, Cullen LC (2010) Recognising the necessity for Indo-Pacific seagrass conservation. Conserv Lett 3:63–73

    Article  Google Scholar 

  • Unsworth RKF, Wylie E, Smith DJ, Bell JJ (2007) Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuar Coast Shelf Sci 72:81–88

    Article  Google Scholar 

  • Unsworth RKF, Salinas de León P, Garrard SL, Jompa J, Smith DJ, Bell JJ (2008) High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar Ecol Prog Ser 353:213–224

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnike S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106:12377–12381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff at IMS (Institute of Marine Sciences, Zanzibar) for providing research facilities and institutional support; Y. Salmin for valuable assistance in the field; all our boat operators in Zanzibar; and two anonymous reviewers for useful comments. This research was funded by the Swedish International Development Cooperation Agency (Sida) through their Minor Field Study (MFS) program, and a research grant from the Swedish Research Council (VR/Uforsk, grant number SWE-2012-086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Alonso Aller.

Additional information

Communicated by D. Goulet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 700 kb)

Supplementary material 2 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso Aller, E., Gullström, M., Eveleens Maarse, F.K.J. et al. Single and joint effects of regional- and local-scale variables on tropical seagrass fish assemblages. Mar Biol 161, 2395–2405 (2014). https://doi.org/10.1007/s00227-014-2514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2514-7

Keywords

Navigation