Skip to main content
Log in

Full-field moisture-induced strains of the different tissues of tamarack and red oak woods assessed by 3D digital image correlation

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The full-field moisture-induced strains (in-plane) and Z-displacements (out-of-plane) of the different tissues of tamarack and red oak woods were assessed by three-dimensional digital image correlation (3D-DIC). Swelling strains in tangential (Ɛxx) and radial (Ɛyy) directions and Z-displacements in axial direction were measured on the cross section of wood samples from dried condition below P2O5 to moisture adsorption condition at 20 °C and 90% RH. Global swelling coefficients (α) were calculated and compared with 3D-DIC strains. Ɛxx, Ɛyy, and Z-displacement data were extracted from earlywood (EW) and latewood (LW) of tamarack, and from three tissue zones of red oak: large vessel zone of the earlywood (EW-v), fiber-dominated (LW-Fiber) and axial parenchyma-dominated (LW-Pa) zones of the latewood. The localized full-field strains were matched with density data obtained by X-ray densitometry. Tamarack wood had a homogeneous Ɛxx, while different Ɛyys were observed for EW and LW. Red oak wood had a more complex mapping of full-field strains, in which the effects of the broad rays on Ɛxx and differences between tissues on Ɛyy appear. A discussion about the radial density profile data and the full-field strains at the tissue level as well as the anisotropic behavior of different tissues is presented for both species. An opposite behavior was found for the EW and LW of tamarack in the longitudinal direction (Z-displacement), showing that EW swells and LW shrinks after moisture adsorption. For red oak, EW-v also swelled and LW-Fiber shrank in the longitudinal direction. LW-Pa zone also shrank after adsorption but to a lower degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida G, Huber F, Perré P (2014) Free shrinkage of wood determined at the cellular level using an environmental scanning electron microscope. Maderas-Cienc Tecnol 16(2):187–198

    CAS  Google Scholar 

  • Badel E, Bakour R, Perré P (2006) Investigation of the relationship between anatomical pattern, density and local swelling of oak wood. IAWA J 27(1):55–71

    Article  Google Scholar 

  • Bonarski JT, Kifetew G, Olek W (2015) Effects of cell wall ultrastructure on the transverse shrinkage anisotropy of Scots pine wood. Holzforschung 69(4):501–507

    Article  CAS  Google Scholar 

  • Butterfield BG, Meylan BA (1973) Microfibrillar webs across vessel pit apertures. Wood Fiber 5:69–75

    Google Scholar 

  • Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173(1):180–190

    Article  Google Scholar 

  • Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29(4):345–386

    Article  Google Scholar 

  • Dünisch O (2013) Relationship between the anatomical structure and the swelling of conditioned wood surfaces. IAWA J 34(2):197–208

    Article  Google Scholar 

  • Gunteki E, Aydin T, Niemz P (2016) Some orthotropic elastic properties of Fagus orientalis as influenced by moisture content. Wood Res-Slovakia 61(1):95–103

    Google Scholar 

  • Jeong GY, Park MJ (2016) Evaluate orthotropic properties of wood using digital image correlation. Constr Build Mater 113:864–869

    Article  Google Scholar 

  • Kang H-Y, Muszyński L, Milota MR, Kang C-W, Matsumura J (2001) Preliminary optical measurement of non-uniform drying strains and check formation in drying wood. J Fac Agr Kyushu U 56(2):313–316

    Google Scholar 

  • Kang H-Y, Kang S-G, Kang C-W, Matsumura J (2013) Measurement of strain distributions in white oak boards during drying using a digital image correlation method. J Fac Agr Kyushu U 58(1):55–59

    Google Scholar 

  • Keunecke D, Novosseletz K, Lanvermann C, Mannes D, Niemz P (2012) Combination of X-ray and digital image correlation for the analysis of moisture-induced strain in wood: opportunities and challenges. Eur J Wood Prod 70:407–413

    Article  Google Scholar 

  • Krzemién L, Strojecki M, Wroński S, Tarasiuk J, Łukomski M (2015) Dynamic response of earlywood and latewood within annual growth ring structure of Scots pine subjected to changing relative humidity. Holzforschung 69(5):555–561

    Article  Google Scholar 

  • Lanvermann C, Evans R, Schmitt U, Hering S, Niemz P (2013) Distribution of structure and lignin within growth rings of Norway spruce. Wood Sci Technol 47(3):627–641

    Article  CAS  Google Scholar 

  • Lanvermann C, Wittel FK, Niemz P (2014) Full-field moisture induced deformation in Norway spruce: intra-ring variation of transverse swelling. Eur J Wood Prod 72:43–52

    Article  Google Scholar 

  • Leonardon M, Altaner CM, Vihermaa L, Jarvis MC (2010) Wood shrinkage: influence of anatomy, cell wall architecture, chemical composition and cambial age. Eur J Wood Prod 68:87–94

    Article  CAS  Google Scholar 

  • Murata K, Masuda M (2006) Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure. J Wood Sci 52:283–289

    Article  Google Scholar 

  • Nakano T (2010) Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17(4):711–719

    Article  CAS  Google Scholar 

  • Nakano T, Sugiyama J, Norimoto M (2000) Contractive force and transformation of microfibril with aqueous sodium hydroxide solution for wood. Holzforschung 54(3):315–320

    Article  CAS  Google Scholar 

  • Oscarsson J, Olsson A, Enquist B (2012) Strain fields around knots in Norway spruce specimens exposed to tensile forces. Wood Sci Technol 46:593–610

    Article  CAS  Google Scholar 

  • Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001

    Article  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. McGraw-Hill Book Co., New York

    Google Scholar 

  • Passarini L, Malveau C, Hernández RE (2015) Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance microimaging. Wood Sci Technol 49:1251–1268

    Article  CAS  Google Scholar 

  • Patera A, Bulcke JV, Boone MN, Derome D, Carmeliet J (2018) Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. Wood Sci Technol 52:91–114

    Article  CAS  Google Scholar 

  • Peng M, Ho Y-C, Wang W-C, Chui YH, Gong M (2012) Measurement of wood shrinkage in jack pine using three dimensional digital image correlation (DIC). Holzforschung 66:639–643

    Article  CAS  Google Scholar 

  • Perré P, Huber F (2007) Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for Douglas fir (Pseudotsuga menziesii) and spruce (Picea abies). Ann Fr Sci 64:255–265

    Article  Google Scholar 

  • Rafsanjani A, Lanvermann C, Niemz P, Carmeliet J, Derome D (2013) Multiscale analysis of free swelling of Norway spruce. Compos Part A 54:70–78

    Article  Google Scholar 

  • Rosero-Alvarado J, Hernández RE, Riedl B (2018) Surface deformation of walnut burl veneer on aircraft sandwich panels assessed by three-dimensional digital image correlation. Wood Sci Technol 52:1511–1525

    Article  CAS  Google Scholar 

  • Säll H (2002) Spiral grain in Norway spruce. Acta Wexionesia No 22/2002

  • Skaar C (1988) Wood-water relations. Springer, Berlin

    Book  Google Scholar 

  • Spear M, Walker J (2006) Dimensional instability in timber. In: Walker JCF (ed) Primary wood processing: principles and practice, 2nd edn. Springer, The Netherlands, pp 95–120

    Chapter  Google Scholar 

  • Stamm AJ (1964) Wood and cellulose science. The Ronald Press Company, New York

    Google Scholar 

  • Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu JJ (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Laser Eng 46:746–757

    Article  Google Scholar 

  • Sutton MA, Orteu JJ, Schreier HW (2009) Image correlation for shape, motion and deformation measurements—basic concepts, theory and applications. Springer, New York

    Google Scholar 

  • Watanabe U, Norimoto M, Fujita M, Gril J (1998) Transverse shrinkage anisotropy of coniferous wood investigated by the power spectrum analysis. J Wood Sci 44:9–14

    Article  Google Scholar 

  • Wheeler EA, Thomas RJ (1981) Ultrastructural characteristics of mature wood of Southern red oak (Quercus falcata Michx.) and white oak (Quercus alba L.). Wood Fiber Sci 13(3):169–181

    Google Scholar 

  • Correlated Solutions (n.d.) Vic-3D v7 Testing guide, p 82

Download references

Acknowledgements

This research was made during the stay of the first author as Visiting Professor at Laval University. Financial support was provided by the National Council for Scientific and Technological Development (CNPq) of the Ministry of Science, Technology, Innovation, and Communications of Brazil (first author), and by the Natural Sciences and Engineering Research Council (NSERC) of Canada (second and third author). The authors are grateful to Luc Germain, Jean Ouellet, and David Lagueux for your technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosilei A. Garcia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, R.A., Rosero-Alvarado, J. & Hernández, R.E. Full-field moisture-induced strains of the different tissues of tamarack and red oak woods assessed by 3D digital image correlation. Wood Sci Technol 54, 139–159 (2020). https://doi.org/10.1007/s00226-019-01145-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-019-01145-5

Navigation