Skip to main content
Log in

Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm increments from the radial face of pith-to-bark strips using a FOSS 5000 scanning spectrometer. A subset of the 10-mm samples was selected based on the NIR spectra uniqueness and placed in calibration (N = 1020) and validation (N = 998) test sets. The samples were macerated and the tracheid properties measured using an optical analyzer (Techpap MorFi Fiber and Shive Analyzer). Models were created using partial least squares (PLS) regression using the calibration samples, and their performance checked using the validation set. Prediction PLS models for tracheid length were strong when checked with the validation set [R 2p  = 0.87, standard error of prediction (SEP) = 0.23 mm, ratio of performance to deviation (RPD) = 2.8]. Prediction models for tracheid width had moderate fit statistics (R2 = 0.61, SEP = 1.6 μm, RPD = 1.6), but the SEP was similar to the measurement error of the camera (± 2 μm). The NIR wavelengths of importance were largely attributed to cellulose. The 1542 nm wavelength explained 77% of the variation in tracheid length (RMSE = 0.31 mm). These results demonstrate that NIR spectroscopy models for tracheid length and width can be developed from a diverse set of samples and still maintain prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AACC (1999) AACC method 39-00.01. Near-infrared methods—guidelines for model development and maintenance. AACC, St. Paul

    Google Scholar 

  • Antony F, Schimleck LR, Daniels RF, Clark A III, Hall DB (2010) Modeling the longitudinal variation in wood specific gravity of planted loblolly pine (Pinus taeda) in the United States. Can J For Res 40(12):2439–2451

    Article  Google Scholar 

  • Bergqvist G, Bergsten U, Ahlqvist B (1997) Effect of radial increment core diameter on tracheid length measurement in Norway spruce. Wood Sci Technol 31:241–250

    Article  CAS  Google Scholar 

  • Borders BE, Bailey RL (2001) Loblolly pine—pushing the limits of growth. South J Appl For 25(2):69–74

    Google Scholar 

  • Carvalho MG, Ferreira PJ, Martins AA, Figueiredo MM (1997) A comparative study of two automated techniques for measuring fiber length. Tappi J 80(2):137–142

    CAS  Google Scholar 

  • Chen ZQ, Abramowicz K, Raczkowski R, Ganea S, Wu HX, Lundqvist SO, Mӧrling T, Sjӧstedt de Luna S, Rosario M, Gil MRG, Mellerowicz EJ (2016a) Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce. Holzforschung 70(9):829–838

    Article  CAS  Google Scholar 

  • Chen ZQ, Karlsson B, Mӧrling T, Olsson L, Mellerowicz EJ, Wu HX, Lundqvist SO, Gil MRG (2016b) Genetic analysis of fiber dimensions and their correlation with stem diameter and solid-wood properties in Norway spruce. Tree Genet Genomes 12:123

    Article  Google Scholar 

  • Dahlen J, Diaz I, Schimleck L, Jones PD (2017) Near-infrared spectroscopy prediction of southern pine No. 2 lumber physical and mechanical properties. Wood Sci Technol 51(2):309–322

    Article  CAS  Google Scholar 

  • Downes G, Meder R, Harwood C (2010) A multi-site, multi-species near infrared calibration for the prediction of cellulose content in eucalypt woodmeal. J Near Infrared Spectrosc 18:381–387

    Article  CAS  Google Scholar 

  • Evans R (1994) Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48(2):168–172

    Article  Google Scholar 

  • Fox TR, Jokela EJ, Allen HL (2007) The development of pine plantation silviculture in the southern United States. J For 105(7):337–347

    Google Scholar 

  • Franklin G (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155(3924):51–55

    Article  Google Scholar 

  • Gindl W, Teischinger A, Schwanninger M, Hinterstoisser B (2001) The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties. J Near Infrared Spectrosc 9:255–261

    Article  CAS  Google Scholar 

  • Granato D, Ares G (2013) Mathematical and statistical methods in food science and technology. Wiley, New York

    Google Scholar 

  • Guay D, Sutherland NR, Rantanen W, Malandri N, Stephens A, Mattingly K, Schneider M (2005) Comparison of fiber length analyzers. In: TAPPI practical papermaking conference proceedings, 22–26 May 2005

  • Guthrie JA, Reid DJ, Walsh KB (2005) Assessment of internal quality attributes of mandarin fruit. 2. NIR calibration robustness. Aust J Agric Res 56:417–426

    Article  Google Scholar 

  • Haartveit EY, Flæte PO (2006) Rapid prediction of basic wood properties by near infrared spectroscopy. N Z J For Sci 36(2/3):393–407

    Google Scholar 

  • Haddadi A, Burger J, Leblon B, Pirouz Z, Groves K, Nader J (2015a) Using near-infrared hyperspectral images on subalpine fire board. Part 1: moisture content estimation. Wood Mater Sci Eng 10(1):27–40

    Article  CAS  Google Scholar 

  • Haddadi A, Burger J, Leblon B, Pirouz Z, Groves K, Nader J (2015b) Using near-infrared hyperspectral images on subalpine fire board. Part 2: density and basic specific gravity estimation. Wood Mater Sci Eng 10(1):41–56

    Article  CAS  Google Scholar 

  • Hauksson JB, Bergqvist G, Bergsten U, Sjöström M, Edlund U (2001) Prediction of basic wood properties for Norway spruce. Interpretation of near infrared spectroscopy data using partial least squares regression. Wood Sci Technol 35(6):475–485

    Article  CAS  Google Scholar 

  • Hein PRG, Brancheriau L, Trugilho PF, Lima JT, Chaix G (2010) Resonance and near infrared spectroscopy for evaluating dynamic wood properties. J Near Infrared Spectrosc 18(6):443–454

    Article  CAS  Google Scholar 

  • Hirn U, Bauer W (2006) A review of image analysis based methods to evaluate fiber properties. Lenzing Berichte 86:96–105

    CAS  Google Scholar 

  • Hodge G, Woodbridge W (2004) Use of near infrared spectroscopy to predict lignin content in tropical and sub-tropical pines. J Near Infrared Spectrosc 12(6):381–390

    Article  CAS  Google Scholar 

  • Inagaki T, Schwanninger M, Kato R, Kurata Y, Thanapase W, Puthson P, Tsuchikawa S (2012) Eucalyptus camaldulensis density and fiber length estimated by near-infrared spectroscopy. Wood Sci Technol 46(1–3):143–155

    Article  CAS  Google Scholar 

  • Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A III (2005a) Non-destructive estimation of Pinus taeda L tracheid morphological characteristics for samples from a wide range of sites in Georgia. Wood Sci Technol 39(7):529–545

    Article  CAS  Google Scholar 

  • Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A III (2005b) Non-destructive estimation of Pinus taeda L. wood properties from a wide range of sites in Georgia. Can J For Res 35:85–92

    Article  Google Scholar 

  • Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A III (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40(8):709–720

    Article  CAS  Google Scholar 

  • Jones PD, Schimleck LR, So CL, Clark A III, Daniels RF (2007) High resolution scanning of radial strips cut from increment cores by near infrared spectroscopy. IAWA J 28(4):473–484

    Article  Google Scholar 

  • Jordan L, He R, Hall DB, Clark A III, Daniels RF (2007) Variation in loblolly pine ring microfibril angle in the Southeastern United States. Wood Fiber Sci 39(2):352–363

    CAS  Google Scholar 

  • Jordan L, Clark A, Schimleck LR, Hall DB, Daniels RF (2008) Regional variation in wood specific gravity of planted loblolly pine in the United States. Can J For Res 38(4):698–710

    Article  Google Scholar 

  • Kahle D, Wickham H (2013) ggmap: spatial visualization with ggplot2. R J 5(1):144–161

    Google Scholar 

  • Kelley SS, Rials TG, Groom LR, So CL (2004) Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung 58(3):252–260

    Article  CAS  Google Scholar 

  • Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148

    Article  Google Scholar 

  • Ladell JT (1959) A new method of measuring tracheid length. Forestry 32:124–125

    Article  Google Scholar 

  • Leblon B, Adepipe O, Hans G, Haddadi A, Tsuchikawa S, Burger J, Stirling R, Pirouz Z, Groves K, Nader J, LaRocpue A (2013) A review of near-infrared spectroscopy for monitoring moisture content and density of solid wood. For Chron 89(5):595–606

    Article  Google Scholar 

  • Li B, Bandekar R, Zha Q, Alsaggaf A, Ni Y (2011) Fiber quality analysis: OpTest fiber quality analyzer versus L&W fiber tester. Ind Eng Chem Res 50(22):12572–12578

    Article  CAS  Google Scholar 

  • Ma T, Inagaki T, Tsuchikawa S (2017) Calibration of SilviScan data of Cryptomeria japonica wood concerning density and microfibril angles with NIR hyperspectral imaging with high spatial resolution. Holzforschung 71(4):341–347

    Article  CAS  Google Scholar 

  • Mäkinen H, Jaakkola T, Piispanen R, Saranpää P (2007) Predicting wood and tracheid properties of Norway spruce. For Ecol Manage 241:175–188

    Article  Google Scholar 

  • McKeand S, Mullin T, Bryam T, White T (2003) Deployment of genetically improved loblolly and slash pines in the south. J For 101(3):32–37

    Google Scholar 

  • McKenzie AW (1994) A guide to pulp evaluation. CSIRO, Melbourne

    Google Scholar 

  • Meder R, Meglen RR (2012) Near infrared spectroscopic and hyperspectral imaging of compression wood in Pinus radiata D. Don. J Near Infrared Spectrosc 20:583–589

    Article  CAS  Google Scholar 

  • Meder R, Schimleck L (2011) Has the time finally come for NIR in the forestry sector? J Near Infrared Spectrosc 19(5):5

    Article  Google Scholar 

  • Meder R, Trung T, Schimleck L (2010) Seeing the wood in the trees: unleashing the secrets of wood via near infrared spectroscopy. J Near Infrared Spectrosc 18:5–7

    Article  Google Scholar 

  • Meder R, Brawner JT, Downes GM, Ebdon N (2011a) Towards the in-forest assessment of Kraft pulp yield: comparing the performance of laboratory and hand-held instruments and their value in screening breeding trials. J Near Infrared Spectrosc 19:421–429

    Article  CAS  Google Scholar 

  • Meder R, Marston D, Ebdon N, Evans R (2011b) Spatially-resolved radial scanning of tree increment cores for near infrared prediction of microfibril angle and chemical composition. J Near Infrared Spectrosc 18:499–505

    Article  Google Scholar 

  • Mevik B-H, Wehrens R, Hovde Liland K (2013) pls: partial least squares and principal component regression. R package version 2.4-3. http://CRAN.R-project.org/package=pls

  • Moore JR, Cown DJ (2017) Corewood (juvenile wood) and its impact on wood utilisation. Curr For Rep 3:107–118

    Google Scholar 

  • Mora C, Schimleck LR (2008) On the selection of samples for multivariate regression analysis: application to near infrared (NIR) calibration models. Can J For Res 38(10):2626–2634

    Article  Google Scholar 

  • Mora C, Schimleck LR (2010) Kernel regression methods for the prediction of wood properties of Pinus taeda using near infrared spectroscopy. Wood Sci Technol 44:561–578

    Article  CAS  Google Scholar 

  • Mӧrling T, Sjӧstedt-de Luna S, Svensson I, Fries A, Ericsson T (2003) A method to estimate fibre length distribution in conifers based on wood samples from increment cores. Holzforschung 57(3):248–254

    Google Scholar 

  • Niskanen K (1998) Paper physics. TAPPI Press, Vancouver

    Google Scholar 

  • Paavilainen L (1993) Importance of cross-dimensional fibre properties and coarseness for the characterisation of softwood sulphate pulp. Pap Puu 75(5):343–351

    CAS  Google Scholar 

  • Pereira H, Santos AJA, Anjos O (2015) Fibre morphological characteristics of kraft pulps of Acacia melanoxylon estimated by NIR-PLS-R models. Materials 9(1):8

    Article  PubMed Central  Google Scholar 

  • Pulkkinen I, Ala-Kaila K, Aittamaa J (2006) Characterization of wood fibers using fiber property distributions. Chem Eng Process 45(7):546–554

    Article  CAS  Google Scholar 

  • Raymond CA, Schimleck LR (2002) Development of near infrared reflectance analysis calibrations for estimating genetic parameters for cellulose content in Eucalyptus globulus. Can J For Res 32(1):170–176

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • RStudio (2017) RStudio: integrated development environment for R. Boston, MA. https://www.rstudio.com/

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964(36):1627–1639

    Article  Google Scholar 

  • Schimleck LR, Evans R (2004) Estimation of Pinus radiata D. tracheid morphological characteristics by near infrared spectroscopy. Holzforschung 58(1):66–73

    Article  CAS  Google Scholar 

  • Schimleck LR, French J (2002) Application of NIR spectroscopy to clonal Eucalyptus globulus samples covering a narrow range of pulp yield. Appita J 55(2):149–154

    CAS  Google Scholar 

  • Schimleck LR, Mora C, Daniels RF (2003) Estimation of the physical wood properties of green Pinus taeda radial samples by near infrared spectroscopy. Can J For Res 33(12):2297–2305

    Article  Google Scholar 

  • Schimleck LR, Jones PD, Peter GF, Daniels RF, Clark A III (2004a) Nondestructive estimation of tracheid length from sections of radial wood strips by near infrared spectroscopy. Holzforschung 58:375–381

    CAS  Google Scholar 

  • Schimleck LR, Mora C, Daniels RF (2004b) Estimation of tracheid morphological characteristics of green Pinus taeda L. radial strips by near infrared spectroscopy. Wood Fiber Sci 36(4):527–535

    CAS  Google Scholar 

  • Schimleck LR, Jones PD, Clark A III, Daniels RF, Peter GF (2005) Near infrared spectroscopy for the nondestructive estimation of clear wood properties of Pinus taeda L. from the southern United States. For Prod J 55(12):21–28

    Google Scholar 

  • Schimleck LR, Kube PD, Raymond CA, Michell AJ, French J (2006) Extending near infrared reflectance (NIR) pulp yield calibrations to new sites and species. J Wood Chem Technol 26(4):299–311

    Article  CAS  Google Scholar 

  • Schimleck LR, Hodge GR, Woodbridge W (2010) Toward global calibrations for estimating the wood properties of tropical, sub-tropical and temperate pine species. J Near Infrared Spectrosc 18:355–365

    Article  CAS  Google Scholar 

  • Schultz RP (1997) Loblolly pine: the ecology and culture of loblolly pine (Pinus taeda L.). US Department of Agriculture, Forest Service, Washington

    Google Scholar 

  • Schwanninger M, Rodrigues JC, Fackler K (2011) A review of band assignments in near infrared spectra of wood and wood components. J Near Infrared Spectrosc 19:287–308

    Article  CAS  Google Scholar 

  • Signal Developers (2013) Signal: signal processing. http://r-forge.r-project.org/projects/signal/

  • Smook GA (2016) Handbook for pulp & paper technologists. TAPPI Press, Vancouver

    Google Scholar 

  • Snee RD (1977) Validation of regression models: methods and examples. Technometrics 19(4):415–428

    Article  Google Scholar 

  • So CL, Via BK, Groom LH, Schimleck LR, Shupe TF, Kelley SS, Rials TG (2004) Near infrared spectroscopy in the forest products industry. For Prod J 54(3):7–16

    Google Scholar 

  • Stevens A, Ramirez-Lopez L (2013) An introduction to the prospectr package. R package Vignette R package version 0.1.3

  • Sykes RW, Isik F, Li B, Kadla J, H-m Chang (2003) Genetic variation of juvenile wood properties in a loblolly pine progeny test. Tappi J 2(12):3–8

    CAS  Google Scholar 

  • Sykes RW, Li B, Hodge G, Goldfarb B, Kadla J, H-m Chang (2005) Prediction of loblolly pine wood properties using transmittance near-infrared spectroscopy. Can J For Res 35:2423–2431

    Article  Google Scholar 

  • Thumm A, Riddell M, Nanayakkara B, Harrington J, Meder R (2010) Near infrared hyperspectral imaging applied to mapping chemical composition in wood samples. J Near Infrared Spectrosc 18:507–515

    Article  CAS  Google Scholar 

  • Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42(1):43–71

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Kobori H (2015) A review of recent application of near infrared spectroscopy to wood science and technology. J Wood Sci 61:213–220

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Schwanninger M (2013) A review of recent near infrared research for wood and paper (part 2). Appl Spectrosc Rev 48(7):560–587

    Article  Google Scholar 

  • Uprichard JM, Lloyd JA (1980) Influence of tree age on the chemical composition of radiata pine. N Z J For Sci 10(3):551–557

    CAS  Google Scholar 

  • Vahey DW, Zhu JY, Scott CT (2007) Wood density and anatomical properties in suppressed-growth trees: comparison of two methods. Wood Fiber Sci 39(3):462–471

    CAS  Google Scholar 

  • Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Via BK, Jiang W (2013) Nonlinear multivariate modeling of strand mechanical properties with near-infrared spectroscopy. For Chron 89(5):621–630

    Article  Google Scholar 

  • Via BK, Stine M, Shupe TF, So CL, Groom L (2004) Genetic improvement of fiber length and coarseness based on paper product performance and material variability—a review. IAWA J 25(4):401–414

    Article  Google Scholar 

  • Via BK, So CL, Shupe TF, Eckhardt LG, Stine M, Groom L (2005a) Prediction of wood mechanical and chemical properties in the presence and absence of blue stain using two near infrared instruments. J Near Infrared Spectrosc 13(4):201–212

    Article  CAS  Google Scholar 

  • Via BK, Shupe TF, Stine M, So CL, Groom LH (2005b) Tracheid length prediction in Pinus palustris by means of near infrared spectroscopy: the influence of age. Holz Roh- Werkst 63(3):231–236

    Article  Google Scholar 

  • Wang T, Aitken SN (2001) Variation in xylem anatomy of selected populations of lodgepole pine. Can J For Res 31(11):2049–2057

    Article  Google Scholar 

  • Wear DN, Greis JG (2002) Southern forest resource assessment: summary of findings. J For 100(7):6–14

    Google Scholar 

  • White DE, Courchene C, McDonough T, Schimleck L, Jones D, Purnell R, Goyal G (2009) Effects of specific gravity and wood chemical content on the pulp yield of loblolly pine. Tappi J 92(4):29–34

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wickham H, Francois R (2016) dplyr: a grammar of data manipulation. R package version 0.4.3. https://CRAN.R-project.org/package=dplyr

  • Wilkins AP, Bamber RK (1983) A comparison between Ladell’s wood section method and the macerated wood method for tracheid length determination. IAWA Bull 4(4):245–247

    Article  Google Scholar 

  • Williams PC, Sobering D (1993) Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J Near Infrared Spectrosc 1(1):25–32

    Article  CAS  Google Scholar 

  • Yeh TF, Hm Chang, Kadla JF (2004) Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy. J Agric Food Chem 52(6):1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Kane M, Borders BE (2011) Growth responses to planting density and management intensity in loblolly pine plantations in the southeastern USA Lower Coastal Plain. Ann For Sci 68(3):625–635

    Article  Google Scholar 

  • Zhao D, Kane MB, Teskey RO, Fox TR, Albaugh TJ, Allen HL, Rubilar RA (2016) Maximum response of loblolly pine plantations to silvicultural management in the southern United States. For Ecol Manag 375:105–111

    Article  Google Scholar 

  • Zobel BJ, Van Buijtenen JP (1989) Wood variation: its causes and control. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This research was possible through support from NIFA McIntire-Stennis Project 1006098 and the Wood Quality Consortium (WQC) at the University of Georgia. The authors wish to thank NIFA and the WQC for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Dahlen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavi, M., Dahlen, J., Schimleck, L. et al. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy. Wood Sci Technol 52, 445–463 (2018). https://doi.org/10.1007/s00226-018-0986-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-0986-1

Navigation