Skip to main content
Log in

Biosorption (removing) of Cd(II), Cu(II) and methylene blue using biochar produced by different pyrolysis conditions of beech and spruce sawdust

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The influence of pyrolysis parameters (temperature, heating rate) on adsorption properties of wood charcoals was studied. Beech and spruce waste sawdust were investigated by TG–MS technique, and it was revealed that pyrolysis of sawdust consists at least of two overlapping reactions characterized by different values of activation energy E a (151 and 184 kJ/mol for beech sawdust, 157 and 172 kJ/mol for spruce sawdust). Based on obtained results, adsorbents from studied sawdust were prepared through pyrolysis at 400–700 °C with heating rate 10 or 2 K/min and their surface and adsorption characteristics were investigated. It was found that higher pyrolysis temperature (700 °C) and higher heating rate (10 K/min) generally improved micropore surface areas of beech and spruce biochars. The adsorption capacity of spruce biochar for Cu(II) and Cd(II) increased with higher pyrolysis temperature and lower heating rate (2 K/min) up to 0.14 and 0.12 mmol/g, respectively. In the case of beech biochar, the adsorption capacity for heavy metal ions has no distinct dependence on pyrolysis temperature nor heating rate. The opposite effect of heating rate was found in the case of the methylene blue uptake, better adsorbent can be prepared by pyrolysis with heating rate 10 K/min. The effect of pyrolysis temperature is not clear in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis. Biomass Bioenergy 84:76–86

    Article  CAS  Google Scholar 

  • Al Shra’ah A, Helleur R (2014) Microwave pyrolysis of cellulose at low temperature. J Anal Appl Pyrolysis 105:91–99

    Article  Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  • Arriagada R, Bello G, García R et al (2005) Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties. Microporous Mesoporous Mater 81:161–167

    Article  CAS  Google Scholar 

  • Bagreev A, Bandosz T, Locke D (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39:1971–1979

    Article  CAS  Google Scholar 

  • Biniak S, Pakula M, Szymanski GS, Światkowski A (1999) Effect of activated carbon surface oxygen-and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir 15:6117–6122

    Article  CAS  Google Scholar 

  • Bouchelta C, Medjram MS, Zoubida M et al (2012) Effects of pyrolysis conditions on the porous structure development of date pits activated carbon. J Anal Appl Pyrolysis 94:215–222

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Chen L et al (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884

    Article  CAS  PubMed  Google Scholar 

  • Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608

    Article  CAS  Google Scholar 

  • Das L, Kolar P, Classen JJ, Osborne JA (2013) Adsorbents from pine wood via K 2 CO 3-assisted low temperature carbonization for adsorption of p-cresol. Ind Crops Prod 45:215–222

    Article  CAS  Google Scholar 

  • Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482

    Article  CAS  Google Scholar 

  • Ding Z, Wan Y, Hu X et al (2016) Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: importance of physicochemical properties. J Ind Eng Chem 37:261–267

    Article  CAS  Google Scholar 

  • Dong C, Zhang Z, Lu Q, Yang Y (2012) Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers Manag 57:49–59

    Article  CAS  Google Scholar 

  • El-Sheikh AH, Alzawahreh AM, Sweileh JA (2011) Preparation of an efficient sorbent by washing then pyrolysis of olive wood for simultaneous solid phase extraction of chloro-phenols and nitro-phenols from water. Talanta 85:1034–1042

    Article  CAS  PubMed  Google Scholar 

  • Emmanuel V, Odile B, Celine R (2015) FTIR spectroscopy of woods: a new approach to study the weathering of the carving face of a sculpture. Spectrochim Acta Part Mol Biomol Spectrosc 136:1255–1259

    Article  CAS  Google Scholar 

  • Gaballah I, Kilbertus G (1998) Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. J Geochem Explor 62:241–286

    Article  CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area, and porosity. Academic Press, London

    Google Scholar 

  • Grioui N, Halouani K, Zoulalian A, Halouani F (2006) Thermogravimetric analysis and kinetics modeling of isothermal carbonization of olive wood in inert atmosphere. Thermochim Acta 440:23–30

    Article  CAS  Google Scholar 

  • Han X, Liang C, Li T et al (2013) Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. J Zhejiang Univ Sci B 14:640–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heigenmoser A, Liebner F, Windeisen E, Richter K (2013) Investigation of thermally treated beech (Fagus sylvatica) and spruce (Picea abies) by means of multifunctional analytical pyrolysis-GC/MS. J Anal Appl Pyrolysis 100:117–126

    Article  CAS  Google Scholar 

  • Johns MM, Marshall WE, Toles CA (1998) Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics. J Chem T Echnol Biotechnol 71:131–140

    Article  CAS  Google Scholar 

  • Kameyama K, Miyamoto T, Iwata Y, Shiono T (2016) Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Sci Plant Nutr 62:180–184

    Article  CAS  Google Scholar 

  • Khatri A, Peerzada MH, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J Clean Prod 87:50–57

    Article  CAS  Google Scholar 

  • Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188

    Article  CAS  Google Scholar 

  • Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781

    Article  CAS  Google Scholar 

  • Krika F, Azzouz N, Ncibi MC (2011) Adsorptive removal of cadmium from aqueous solution by cork biomass: equilibrium, dynamic and thermodynamic studies. Arab J Chem 9:S1077–S1083

    Article  Google Scholar 

  • Larfeldt J, Leckner B, Melaaen MC (2000) Modelling and measurements of the pyrolysis of large wood particles. Fuel 79:1637–1643

    Article  CAS  Google Scholar 

  • Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–32

    Article  Google Scholar 

  • Li J, Li Y, Wu Y, Zheng M (2014) A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J Hazard Mater 280:450–457

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Goos E, Riedel U (2013) A sectional approach for biomass: modelling the pyrolysis of cellulose. Fuel Process Technol 115:246–253

    Article  CAS  Google Scholar 

  • Liu Z, Zhang F-S (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang S, Zheng Y et al (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis 82:170–177

    Article  CAS  Google Scholar 

  • Lua A, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287

    Article  CAS  Google Scholar 

  • Mahmoud DK, Salleh MAM, Karim WAWA et al (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chem Eng J 181–182:449–457

    Article  Google Scholar 

  • Medek J (1977) Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel 56:131–133

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Bricka M et al (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73

    Article  CAS  PubMed  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  PubMed  Google Scholar 

  • Mui ELK, Cheung WH, Valix M, McKay G (2010) Dye adsorption onto char from bamboo. J Hazard Mater 177:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • NIST (2001) NIST/EPA/NIH Mass Spectral Library with NIST Mass Spectral Search Program. NIST

  • Nunes CA, Guerreiro MC (2011) Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Quim Nova 34:472–476

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  PubMed  Google Scholar 

  • Pellera F-M, Giannis A, Kalderis D et al (2012) Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manag 96:35–42

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012a) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  PubMed  Google Scholar 

  • Poletto M, Zattera AJ, Santana RMC (2012b) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol 126:7–12

    Article  CAS  PubMed  Google Scholar 

  • Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164:105–110

    Article  CAS  Google Scholar 

  • Radovic LR (2001) Chemistry and Physics of Carbon. Marcel Dekker, New York

    Google Scholar 

  • Reyer C, Lasch-Born P, Suckow F et al (2014) Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci 71:211–225

    Article  Google Scholar 

  • Rios CA, Williams CD, Roberts CL (2008) Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J Hazard Mater 156:23–35

    Article  CAS  PubMed  Google Scholar 

  • Scherdel C, Reichenauer G, Wiener M (2010) Relationship between pore volumes and surface areas derived from the evaluation of N-2-sorption data by DR-, BET- and t-plot. Microporous Mesoporous Mater 132:572–575

    Article  CAS  Google Scholar 

  • Sebio-Puñal T, Naya S, López-Beceiro J et al (2012) Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim 109:1163–1167

    Article  Google Scholar 

  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF et al (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150

    Article  CAS  Google Scholar 

  • Suhas, Carrott PJM, Ribeiro Carrott MML (2007) Lignin-from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Tancredi N, Cordero T, Rodríguez-Mirasol J, Rodríguez JJ (1997) Activated carbons from eucalyptus wood. Influence of the carbonization temperature. Sep Sci Technol 32:1115–1126

    Article  CAS  Google Scholar 

  • Tong X, Li J, Yuan J, Xu R (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834

    Article  CAS  Google Scholar 

  • Valenzuela-Calahorro C, Bernalte-Garcia A, Gomez-Serrano V, Bernalte-Garcia J (1987) Influence of particle-size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood. J Anal Appl Pyrolysis 12:61–70

    Article  CAS  Google Scholar 

  • Veselá P, Slovák V, Zelenka T et al (2016) The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu(II) ions and phenol. J Anal Appl Pyrolysis 121:29–40

    Article  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Wang X et al (2013) Adsorption of Pb(II) from aqueous solution to Ni-doped bamboo charcoal. J Ind Eng Chem 19:353–359

    Article  CAS  Google Scholar 

  • Wang M, Yao S, Xu X et al (2016) The effect of carbonization temperature on the morphology and adsorption of pine-shoot biomorphic porous carbon. J Porous Mater 23:1169–1179

    Article  CAS  Google Scholar 

  • Wu W, Li J, Niazi NK et al (2016) Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ Sci Pollut Res 23:22890–22896

    Article  CAS  Google Scholar 

  • Yakkala K, Yu M-R, Roh H et al (2013) Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system. Desalin Water Treat 51:7732–7745

    Article  CAS  Google Scholar 

  • Zelenka T, Taraba B (2014) Sorption of CO2 on low-rank coal: study of influence of various drying methods on microporous characteristics. Int J Coal Geol 132:1–5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic in the “National Feasibility Program I”, Project LO1208 “Theoretical Aspects of Energetic Treatment of Waste and Environment Protection against Negative Impacts” and by a project of the Moravia-Silesian region, Reg. No. 02679/2014/RRC. The University of Ostrava supported this research by means of SGS Reg. No. SGS02/PřF/2015. The assistance of Zuzana Navrátilová, Roman Maršálek, Martin Mucha is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Štefelová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štefelová, J., Zelenka, T. & Slovák, V. Biosorption (removing) of Cd(II), Cu(II) and methylene blue using biochar produced by different pyrolysis conditions of beech and spruce sawdust. Wood Sci Technol 51, 1321–1338 (2017). https://doi.org/10.1007/s00226-017-0928-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0928-3

Navigation